Python实战指南:统计与机器学习从入门到精通

需积分: 5 10 下载量 66 浏览量 更新于2024-07-06 收藏 10.48MB PDF 举报
"《统计与机器学习在Python中》是一本由Edouard Duchesnay、Tommy Löfstedt和Feki Younes合著的实战指南,专为Python初学者和数据分析、机器学习专业人士设计。该书于2021年10月4日发布,主要针对使用Python进行数据科学实践,涵盖了从安装Python环境、基础操作到高级主题,如numpy数组处理、pandas数据管理、matplotlib和seaborn数据可视化、统计分析(包括单变量、多元统计和时间序列分析)、线性混合模型,以及机器学习的基本概念,如线性降维等。 在第一部分,作者介绍了Python数据科学生态系统,强调了其在机器学习中的核心地位。章节2详细讲解了Python语言的基础,包括导入库、基本操作、数据类型、执行控制语句、列表推导、函数定义、正则表达式、系统编程、脚本编写和网络功能等。这部分内容对于熟悉编程语言结构至关重要。 接着,章节3深入探讨科学计算Python工具,如numpy用于数组和矩阵处理,pandas则专注于数据清洗、转换和分析。数据可视化是通过matplotlib和seaborn模块实现的,使读者能够理解和呈现数据趋势。 在统计部分,章节4涵盖了统计学的各个方面,从单变量统计(如均值、方差)到多元分析和时序数据处理。作者还提供了一个关于脑体积研究的实验室项目,让读者应用所学知识解决实际问题。 最后,章节5集中于机器学习,包括线性降维技术,这通常是许多算法的入门点,为后续的模型构建和预测奠定了基础。全书包含丰富的实例和练习,帮助读者扎实掌握Python在统计和机器学习领域的实践技能。 总体而言,《Statistics and Machine Learning in Python》是一本既适合新手入门,又适合有一定经验者提升Python数据分析和机器学习能力的实用教材,通过实践操作和理论讲解相结合的方式,帮助读者掌握Python工具链并应用到实际项目中。"
2017-08-01 上传
Pratap Dangeti, "Statistics for Machine Learning" English | ISBN: 1788295757 | 2017 | EPUB | 311 pages | 12 MB Key Features Learn about the statistics behind powerful predictive models with p-value, ANOVA, F-statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of machine learning with the help of this example-rich guide in R & Python. Book Description Complex statistics in machine learning worries a lot of developers. Knowing statistics helps in building strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for machine learning. You will gain information on statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and make you comfortable with it. You will come across programs for performing tasks such as model, parameters fitting, regression, classification, density collection, working with vectors, matrices, and more.By the end of the book, you will understand concepts of required statistics for Machine Learning and will be able to apply your new skills to any sort of industry problems. What you will learn Understanding Statistical & Machine learning fundamentals necessary to build models Understanding major differences & parallels between statistics way of solving problem & machine learning way of solving problem Know how to prepare data and "feed" the models by using the appropriate machine learning algorithms from the adequate R & Python packages Analyze the results and tune the model appropriately to his or her own predictive goals Understand concepts of required statistics for Machine Learning Draw parallels between statistics and machine learning Understand each component of machine learning models and see impact of changing them