MATLAB在控制系统分析中的应用——图形化新视角

需积分: 15 5 下载量 7 浏览量 更新于2024-08-21 收藏 3.74MB PPT 举报
"该资料是关于‘控制系统计算机辅助设计’的MATLAB语言与应用课程,主要探讨如何利用MATLAB进行线性控制系统的分析。课程由东北大学信息学院提供,作者薛定宇,第二版教材由清华大学出版社出版。课程旨在更新系统分析观念,解决传统方法难以处理的问题,包括离散系统的稳定性分析、Nyquist图和Nichols图的频率补偿、高阶系统的根轨迹绘制以及多变量系统的频域分析等。内容涵盖线性系统定性分析、时域响应解析解法、数字仿真分析、根轨迹和频域分析等。" 在控制系统的计算机辅助设计中,MATLAB作为一种强大的工具,能够帮助工程师和研究人员从新的角度来研究和分析问题。第四章主要涉及线性系统分析,包括定性分析、时域响应、数字仿真、根轨迹和频域分析等多个方面。 线性系统稳定性分析是关键的一环,它涉及到系统在不同输入条件下的行为预测。MATLAB提供了工具来判断系统的稳定性,无论是对于连续时间系统还是离散时间系统。离散系统的稳定性分析通常需要考虑Z变换和稳定性判据,如BIBO稳定性和劳斯-赫尔维茨稳定性条件。 Nyquist图和Nichols图是频域分析中的重要手段,但它们无法直接提供完整的频率信息。MATLAB可以弥补这一不足,通过计算和绘制这些图的补充信息,如Nyquist稳定性判据和Nichols图的增益和相位数据,以全面评估系统的频率特性。 根轨迹分析对于高阶系统尤为重要,因为它们揭示了系统动态特性的关键信息。在MATLAB中,可以方便地绘制并分析根轨迹,从而理解系统在不同开环增益下的闭环根位置,进一步推断系统的稳定性。 此外,MATLAB也支持多变量系统的频域分析,这对于理解和优化多输入多输出(MIMO)系统的性能至关重要。通过计算和可视化传递函数矩阵,可以评估系统的交互影响和耦合效应,从而进行控制器设计。 在系统分析中,线性系统的相似变换和状态空间表示是基础。MATLAB可以帮助转换系统为标准型,如哈密顿标准型或卡尔曼标准型,这在求解系统的可控性和可观测性问题时非常有用。可控性和可观测性分析是现代控制理论的核心,它们决定了我们能否有效地设计和实施控制器以及监测系统状态。 这个课程通过MATLAB提供的强大功能,使学习者能够深入理解和应用线性控制系统的各种分析技术,不仅限于传统的理论方法,还包括了现代计算机辅助设计的新视角。