Apache Flink 1.7版实时流处理指南

4星 · 超过85%的资源 需积分: 41 50 下载量 55 浏览量 更新于2024-07-17 1 收藏 9.93MB PDF 举报
《Stream Processing with Apache Flink》是一本由Fabian Hueske和Vasiliki Kalavri合著的英文专业书籍,专注于Apache Flink在大数据流处理领域的基础知识、实现方法和操作应用。该书于2019年首次发布,针对的是Flink版本1.7,这是当时最新的技术资料,适合对实时数据处理感兴趣的开发者和数据工程师。 本书的核心内容包括以下几个方面: 1. **Flink基础**:书中详细介绍了Flink的架构和核心概念,如DataStream API、时间窗口、事件时间处理等,帮助读者理解这个流处理框架的工作原理。 2. **编程模型**:讲解了如何使用Java或Scala编写高效的流处理应用程序,包括事件驱动的数据处理逻辑、并行性和容错机制等。 3. **实时计算**:讨论了如何设计实时分析管道,如实时聚合、实时机器学习、实时警报系统等实际应用场景。 4. **分布式部署**:涵盖了Flink在集群环境中的部署和管理,包括资源调度、故障恢复和性能优化策略。 5. **实践案例**:书中还提供了丰富的实战案例,通过实际项目的剖析,让读者掌握如何将理论知识应用到实际工作场景中。 6. **最新版本特性**:作为1.7版本的指南,书中紧跟技术发展,介绍了该版本的新功能和技术改进,确保读者了解最前沿的Flink技术。 7. **版权限制与购买信息**:O'Reilly Media出版,适用于教育、商业或销售推广用途,提供在线版供读者选择。书中还提供了联系方式以便获取更多信息。 《Stream Processing with Apache Flink》不仅是一本技术参考书,也是一本实用的教程,适合那些希望深入学习和掌握Flink流处理技术的专业人士,无论是在开发实时数据分析系统,还是在优化现有系统的性能时,都能从中获益匪浅。随着大数据和实时分析需求的增长,这本书的重要性在不断凸显,是提升个人技能和团队能力的宝贵资源。
2019-03-11 上传
注:Stream Processing with Apache Flink网页版 Book Description With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as he or she writes—so you can take advantage of these technologies long before the official release of these titles. You’ll also receive updates when significant changes are made, new chapters are available, and the final ebook bundle is released. Get started with Apache Flink, the open source framework that enables you to process streaming data—such as user interactions, sensor data, and machine logs—as it arrives. With this practical guide, you’ll learn how to use Apache Flink’s stream processing APIs to implement, continuously run, and maintain real-world applications. Authors Fabian Hueske, one of Flink’s creators, and Vasia Kalavri, a core contributor to Flink’s graph processing API (Gelly), explains the fundamental concepts of parallel stream processing and shows you how streaming analytics differs from traditional batch data analysis. Software engineers, data engineers, and system administrators will learn the basics of Flink’s DataStream API, including the structure and components of a common Flink streaming application. Solve real-world problems with Apache Flink’s DataStream API Set up an environment for developing stream processing applications for Flink Design streaming applications and migrate periodic batch workloads to continuous streaming workloads Learn about windowed operations that process groups of records Ingest data streams into a DataStream application and emit a result stream into different storage systems Implement stateful and custom operators common in stream processing applications Operate, maintain, and update continuously running Flink streaming applications Explore several deployment options, including the setup of highly available installations