没有合适的资源?快使用搜索试试~ 我知道了~
首页MATLAB仿真指南:导波光子学基础与应用
"导波光子学matlab仿真.pdf"
导波光子学是光学领域的一个重要分支,主要研究光在特定结构(如光纤、光波导等)中的传播和操控。MATLAB是一款强大的数学计算软件,广泛应用于科学计算、数据分析、算法开发以及图形可视化等领域。在导波光子学中,MATLAB可以用于模拟光波的传播特性,设计和优化光子器件,以及分析实验数据。
本书"GuidedWave Photonics Fundamentals and Applications with MATLAB"由Le Nguyen Binh撰写,是导波光子学与MATLAB结合的实用教程。书中详细介绍了导波光子学的基础理论,包括光的传播原理、光波导的模式分析、光与材料相互作用的基本概念,以及相关的应用实例。通过MATLAB,作者提供了仿真代码,帮助读者理解和实践这些理论知识,这对于本科生和研究生深入学习导波光学具有极大的价值。
书中的内容可能涵盖了以下几个方面:
1. 光波导理论:介绍光波导的形成原理,如电磁场在不同介质界面的传播条件,以及如何通过模式解析来确定光在波导中的传输特性。
2. 光纤通信:讨论光纤作为导波光子学的重要应用,包括多模和单模光纤的特性,以及光纤通信系统的信号传输和调制解调技术。
3. MATLAB仿真工具箱:介绍如何使用MATLAB的Optical Communication Toolbox或FDTD Solutions等工具进行光子器件的设计和性能评估,例如模拟光的传播、散射、耦合和损耗等现象。
4. 实验数据分析:讲解如何利用MATLAB处理和分析实验测量数据,如光谱分析、信噪比计算、误码率测试等。
5. 光子器件设计:涵盖各种光子器件的建模,如光开关、光调制器、光滤波器等,通过MATLAB实现对器件性能的预测和优化。
6. 超快光纤激光器:探讨基于MATLAB的模型,研究超快光纤激光器的工作原理和动态行为,包括脉冲压缩、锁模效应等。
7. 有机薄膜光子学:介绍有机薄膜的分子层沉积技术和它们在光子学中的应用,可能会涉及到MATLAB在材料性质计算和器件模拟中的应用。
通过阅读本书,读者不仅可以掌握导波光子学的基本理论,还能掌握MATLAB在光子学研究中的实际应用技巧,提高其在光学工程领域的实践能力。值得注意的是,书中虽然使用了MATLAB商标,但并不意味着MATLAB公司对书中的内容或练习提供了官方保证。读者应独立验证书中提供的仿真结果和理论分析。

Contents xv
9. Integrated Guided-Wave Photonic Transmitters .........................................................457
9.1 Introduction ...............................................................................................................457
9.2 Optical Modulators ...................................................................................................458
9.2.1 Phase Modulators ........................................................................................458
9.2.2 Intensity Modulators ...................................................................................460
9.2.2.1 Phasor Representation and Transfer Characteristics ..............460
9.2.2.2 Bias Control ...................................................................................462
9.2.2.3 Chirp Free Optical Modulators .................................................. 462
9.2.2.4 Structures of Photonic Modulators ............................................464
9.2.2.5 Typical Operational Parameters .................................................464
9.3 Traveling Wave Electrodes for Integrated Modulators........................................465
9.3.1 Introduction ..................................................................................................466
9.3.2 Numerical Formulation ..............................................................................467
9.3.2.1 Discrete Fields and Potentials ....................................................467
9.3.2.2 Electrode Line Capacitance, Characteristic Impedance
and Microwave Effective Index ..................................................469
9.3.2.3 Electric Fields E
x
and E
y
and the Overlap Integral ..................471
9.3.3 Electrode Simulation and Discussions .....................................................471
9.3.3.1 Grid Allocation and Modeling Performance ...........................471
9.3.3.2 Model Accuracy ............................................................................ 474
9.3.4 Electro-Optic Overlap Integral, Γ .............................................................. 476
9.3.5 Tilted Wall Electrode ...................................................................................478
9.3.6 Frequency Responses of Phase Modulation by Single Electrode ......... 481
9.3.7 Remarks .........................................................................................................484
9.4 Lithium Niobate Optical Modulators: Devices and Applications .....................485
9.4.1 Mach-Zehnder Interferometric Modulator and Ultra-High Speed
Advanced Modulation Formats .................................................................485
9.4.1.1 Amplitude Modulation................................................................486
9.4.1.2 Phase Modulation ........................................................................486
9.4.1.3 Frequency Modulation ................................................................486
9.4.2 LiNbO
3
MZIM Fabrication .........................................................................487
9.4.3 Effects of Angled-Wall Structure on RF Electrodes ................................488
9.4.4 Integrated Modulators and Modulation Formats ...................................490
9.4.5 Remarks .........................................................................................................492
9.5 Generation and Modulation of Optical Pulse Sequences ...................................492
9.5.1 Return-to-Zero Optical Pulses ...................................................................492
9.5.1.1 Generation .....................................................................................492
9.5.1.2 Phasor Representation .................................................................493
9.5.2 Differential Phase Shift Keying .................................................................498
9.5.2.1 Background ...................................................................................498
9.5.2.2 Optical Differential Phase Shift Keying Transmitter .............499
9.6 Generation of Modulation Formats ........................................................................500
9.6.1 Amplitude Shift Keying .............................................................................500
9.6.1.1 Amplitude–Modulation Amplitude Shift Keying-Non-
Return-to-Zero and Amplitude Shift Keying-Return-to-Zero .... 500
9.6.1.2 Amplitude–Modulation on-off Keying Return-to-Zero
Formats ..........................................................................................501
9.6.1.3 Amplitude–Modulation Carrier-Suppressed Return-to-
Zero Formats .................................................................................501

xvi Contents
9.6.2 Discrete Phase–Modulation Non-Return-to-Zero Formats ...................503
9.6.2.1 Differential Phase Shift Keying .................................................503
9.6.2.2 Differential Quadrature Phase Shift Keying ...........................504
9.6.2.3 M-Ary Amplitude Differential Phase Shift Keying ................505
9.6.3 Continuous Phase-Modulation (PM)-Non-Return-to-Zero Formats....506
9.6.3.1 Linear and Nonlinear Minimum Shift Keying ........................509
9.6.3.2 Minimum Shift Keying as a Special Case of Continuous
Phase Frequency Shift Keying ................................................... 511
9.6.3.3 Minimum Shift Keying as Offset Differential Quadrature
Phase Shift Keying ....................................................................... 512
9.6.3.4 Conguration of Photonic Minimum Shift Keying
Transmitter Using Two Cascaded Electro-Optic Phase
Modulators .................................................................................... 512
9.6.3.5 Conguration of Optical Minimum Shift Keying
Transmitter Using Mach-Zehnder Intensity Modulators:
I-Q Approach ................................................................................ 514
9.6.4 Single Side Band (SSB) Optical Modulators ............................................. 514
9.7 Problems ..................................................................................................................... 515
References ............................................................................................................................. 518
10. Nonlinearity in Guided Wave Devices .......................................................................... 521
10.1 Nonlinear Effects in Integrated Optical Waveguides for Photonic Signal
Processing ..................................................................................................................521
10.1.1 Introductory Remarks ................................................................................. 521
10.1.2 Third-Order Nonlinearity and Parametric Four-Wave Mixing
Process ...........................................................................................................522
10.1.2.1 Nonlinear Wave Equation ...........................................................522
10.1.2.2 Four-Wave Mixing Coupled-Wave Equations ......................... 523
10.1.2.3 Phase Matching ............................................................................ 524
10.1.3 Transmission Models and Nonlinear Guided Wave Devices ...............525
10.1.4 System Applications of Third-Order Parametric Nonlinearity in
Optical Signal Processing ...........................................................................526
10.1.4.1 Parametric Ampliers .................................................................526
10.1.4.2 Wavelength Conversion and Nonlinear Phase
Conjugation ............................................................................. 530
10.1.4.3 High-Speed Optical Switching...................................................533
10.1.4.4 Triple Correlation .........................................................................537
10.1.5 Application of Nonlinear Photonics in Advanced
Telecommunications ....................................................................................542
10.1.6 Remarks .........................................................................................................548
10.2 Nonlinear Effects in Actively Mode-locked Fiber Lasers ...................................549
10.2.1 Introductory Remarks .................................................................................549
10.2.2 Laser Model ..................................................................................................549
10.2.2.1 Modeling of the Fiber ..................................................................550
10.2.2.2 Modeling of the Er:Doped Fiber Ampliers ............................550
10.2.2.3 Modeling of the Optical Modulator ..........................................550
10.2.2.4 Modeling of the Optical Filter .................................................... 551
10.2.3 Nonlinear Effects in Actively Mode-Locked Fiber Lasers .....................551
10.2.3.1 Zero Detuning .............................................................................. 551

Contents xvii
10.2.3.2 Detuning in Actively Mode-Locked Fiber Laser with
Nonlinearity Effect.......................................................................553
10.2.3.3 Pulse Amplitude Equalization in Harmonic Mode-Locked
Fiber Laser ....................................................................................... 555
10.2.4 Experiments ..................................................................................................556
10.2.4.1 Experimental Setup .....................................................................556
10.2.4.2 Mode-Locked Pulse Train with 10 GHz Repetition Rate ....... 557
10.2.4.3 Pulse Shortening and Spectrum Broadening under
Nonlinearity Effect.......................................................................559
10.2.5 Remarks .........................................................................................................559
10.3 Nonlinear Photonic Pre-Processing for Bispectrum Optical Receivers ............560
10.3.1 Introductory Remarks .................................................................................560
10.3.2 Bispectrum Optical Receiver ..................................................................... 561
10.3.3 Triple Correlation and Bispectra ................................................................ 561
10.3.3.1 Denition ....................................................................................... 561
10.3.3.2 Gaussian Noise Rejection ............................................................562
10.3.3.3 Encoding of Phase Information .................................................562
10.3.3.4 Eliminating Gaussian Noise .......................................................562
10.3.4 Bispectral Optical Structures .....................................................................563
10.3.4.1 Principles .......................................................................................564
10.3.4.2 Technological Implementation ..................................................564
10.3.5 Four-Wave Mixing in Highly Nonlinear Media .....................................565
10.3.6 Third Harmonic Conversion ......................................................................565
10.3.7 Conservation of Momentum ......................................................................565
10.3.8 Estimate of Optical Power Required for Four-Wave Mixing ................565
10.3.9 Mathematical Principles of Four-Wave Mixing and the Wave
Equations .......................................................................................................566
10.3.9.1 Phenomena of Four-Wave Mixing .............................................566
10.3.9.2 Coupled Equations and Conversion Efciency .......................567
10.3.9.3 Evolution of Four-Wave Mixing along the Nonlinear
Waveguide Section .......................................................................568
10.3.10 Transmission and Detection .......................................................................568
10.3.10.1 Optical Transmission Route and Simulation Platform ...........568
10.3.10.2 Four-Wave Mixing and Bispectrum Receiving ........................569
10.3.10.3 Performance ..................................................................................569
10.3.11 Remarks .........................................................................................................572
10.4 Raman Effects in Microstructure Optical Fibers or Photonic Crystal
Fibers ................................................................................................................... 573
10.4.1 Introductory Remarks ................................................................................. 573
10.4.2 Raman Gain in Photonic Crystal Fibers ................................................... 575
10.4.2.1 Measurement of Raman Gain ....................................................575
10.4.2.2 Effective Area and Raman Gain Coefcient ............................ 576
10.4.3 Remarks .........................................................................................................582
10.5 Raman Gain of Segmented Core Prole Fibers ....................................................582
10.5.1 Segmented-Core Fiber Design for Raman Amplication ......................583
10.5.2 Advantages of Dispersion Compensating Fiber as a Lumped/
Discrete Raman Amplier (DRA) .............................................................583
10.5.3 Spectrum of Raman Amplication ...........................................................584
10.5.4 Key Equations for Deducing the Raman Gain of Ge-Doped Silica ......584

xviii Contents
10.5.5 Design Methodology for Dispersion Compensating Fiber—
Discrete Raman Ampliers ........................................................................586
10.5.6 Design Steps .................................................................................................589
10.5.7 Sampled Prole Design ...............................................................................590
10.5.8 Remarks ......................................................................................................... 591
10.6 Summary ....................................................................................................................592
References .............................................................................................................................595
Appendix 1 Coordinate System Transformations ............................................................601
Appendix 2 Models for Couplers in FORTRAN ..............................................................607
Appendix 3 Overlap Integral ................................................................................................633
Appendix 4 Coupling Coefcients ......................................................................................637
Appendix 5 Additional Coupling Coefcients .................................................................639
Appendix 6 Elliptic Integral .................................................................................................641
Appendix 7 Integrated Photonics: Fabrication Processes for LiNbO
3
Ultra-Broadband Optical Modulators ..........................................................643
Appendix 8 Planar Waveguides by Finite Difference Method—FORTRAN
PROGRAMS ......................................................................................................665
Appendix 9 Interdependence between Electric and Magnetic Fields and
Electromagnetic Waves ....................................................................................729

xix
Preface
This book presents the theory and simulation of optical waveguides and wave propaga-
tions in a guided environment, the guided wave photonics. It consists of a unied treat-
ment of three distinct but related topics of formulation of wave equations in the transverse
plane and time-dependent propagation directions, the coupling of the guided wave sys-
tems, and nonlinear behavior of the guided waves in such waveguiding systems.
A departure from the convention followed by most books in the eld is the omission of
introductory chapters on the fundamentals of the theory of guided waves. Rather, the book
as a whole is aimed at readers with a background on the propagation of electromagnetic
waves, offered in a semester course covering essential matters on the guiding of light-
waves in waveguide structures. However, essential background materials are given in the
appendices. These guided wave devices play the most important roles in the engineering
of optical communications transmission at ultra-high speed.
Therefore, guiding of lightwaves in planar and three-dimensional structures is described
in Chapters 2 and 3, while Chapters 4 and 5 describe the guiding of lightwaves in circular
optical waveguides, the single-mode optical bers. Chapters 6 and 7 describe the coupling
phenomena via the scalar and full coupled-mode theories. Chapter 8 gives a brief treatment
of nonlinear optical waveguides and Chapter 10 a treatment of optical bers and their appli-
cations in performing a number of photonic manipulating functions such as phase conju-
gation and time demultiplexing in optical transmission systems. Nonlinear effects in such
guided wave devices are also treated, wherever appropriate in sections of the chapters.
The motivation and materials for this book have been provided mainly by research
conducted in the University of Western Australia, Monash University, Siemens Central
Research Laboratories at Otto Hahn Ring, Munich, Germany and Nortel Networks
Advanced Technology Research Centers at Harlow, England with which the author has
been associated as a technical and academic member.
Many other people contributed signicantly to this book. Research students at Monash
University contributed over the years; in particular, my research scholars and doctoral
graduates Dr. Su-Vun Chung, Dr. Shu Zheng, Dr. Wenn Jing Lai, Dr. X. Wang and Dr.
Nguyen Duc Nhan. Undergraduate students attending the courses in advanced photo-
nics and optical ber communications and electromagnetic wave propagations of the
Department of Electrical and Computer Systems Engineering of Monash University,
Faculty of Engineering of the Christian Albrechts University of Kiel, Germany and
Network Technology Research Center of Nanyang Technological University of Singapore,
have questioned and challenged several aspects of wave guiding in optical waveguides, I
thus thank them for their exchanges of ideas and curiosity.
I wish to thank Ashley Gasque of CRC Press for her encouragement and assistance in the
formulation of this book. I extend special thanks to the wife Nguyen Thi Phuong and my
son Le Nguyen Lam for putting up with the intrusion on family time as a result of all the
days and nights spent on the chapters of this book. Last and not least, I thank my mother
Nguyen Thi Huong and late father for giving their children the best education philosophy
over many years and their teaching of “learning for life.”
Le Nguyen Binh
Glen Iris, Australia
剩余785页未读,继续阅读
349 浏览量
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情

wuzhonghan123
- 粉丝: 33
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助

最新资源
- 刘长炯著MyEclipse 6 Java EE开发全攻略
- JAVA面试常见问题解析
- 武汉大学计算机考研试题合集
- 半B/S模式下Z3950客户端设计与实现探讨
- 使用JBuilder9开发Struts Web应用实战
- Java面试必备:面向对象、继承与封装解析
- Linux环境下的数字音频编程详解
- 手把手教你安装配置Apache与PHP
- 蓝牙1.0协议详解:架构与应用模型介绍
- 利用Java RMI打造高效分布式应用宝典
- Visual C# 中的常用对话框详解
- JavaScript高级编程:WEB开发人员必备
- 日本软件开发规约:高效与规范的借鉴
- C/C++编程高质量指南:提升代码质量的技巧
- Java Web框架比较:JSF、SpringMVC、Stripes、Struts2、Tapestry和Wicket
- GIS开发者必备:电子杂志深度探讨开发技术与应用
安全验证
文档复制为VIP权益,开通VIP直接复制
