ACM程序设计:动态规划解Fibonacci与最长有序子序列
需积分: 9 140 浏览量
更新于2024-07-25
收藏 1.66MB PPT 举报
ACM程序设计涉及动态规划,通过举例介绍了斐波那契数列的计算,并探讨了动态规划解决最长有序子序列和最大子段和的问题。
在ACM程序设计中,动态规划是一种重要的算法思想,它通常用于解决具有重叠子问题和最优子结构的问题。动态规划的核心是通过存储子问题的解来避免重复计算,从而提高效率。以斐波那契数列为例,Fibonacci数列定义为F(n) = 1 (当n=1或n=2) 或 F(n) = F(n-1) + F(n-2) (当n>2)。原始的递归实现会引发大量的重复计算,导致效率低下。
递归函数`int fa(int n)`在没有优化的情况下,会重复计算相同的Fibonacci数。为了解决这个问题,可以使用一个数组`a[100]`来存储已计算过的Fibonacci数。当尝试计算F(n)时,首先检查`a[i]`是否已经非零,如果是,则直接返回结果,否则进行计算并存入数组。这样就避免了重复计算,提高了效率。
接着,我们来看第二个问题——最长有序子序列。给定一个数列`Num[I]`,我们需要找到最长的非降序子序列。这里可以使用动态规划的方法,定义`F[I]`为以`Num[I]`结尾的最长有序子序列的长度。对于每个`F[I]`,我们遍历之前的元素,找到满足`ele[i].W > ele[j].W`且`ele[i].iq < ele[j].iq`的`j`,然后更新`f[i]`为`max(f[i], f[j]+1)`。初始条件为`f[i]=1`。通过这种方式,我们可以找到整个序列的最长有序子序列。
第三个问题是最大子段和。给定一个包含正负整数的序列,目标是找到连续子序列的最大和。即使所有元素都是负数,最大子段和也被定义为0。解决这个问题的一种常见方法是Kadane's algorithm,它通过遍历序列,记录当前子序列的最大和以及全局最大和。对于每个元素,我们选择将其添加到当前子序列或开始新的子序列(即选择当前元素作为新子序列的起点)。这个过程可以在一次遍历中完成,有效地解决了问题。
这三个问题都展示了动态规划的应用,即通过分解问题,存储子问题的解,并利用这些解构建原问题的最优解。在ACM竞赛中,理解和掌握动态规划是至关重要的,因为它能有效解决许多复杂问题,同时优化时间复杂度。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2013-06-22 上传
2022-09-14 上传
2024-04-07 上传
2011-10-09 上传
2011-10-14 上传
2012-08-01 上传
hzq11171208
- 粉丝: 0
- 资源: 3
最新资源
- R语言中workflows包的建模工作流程解析
- Vue统计工具项目配置与开发指南
- 基于Spearman相关性的协同过滤推荐引擎分析
- Git基础教程:掌握版本控制精髓
- RISCBoy: 探索开源便携游戏机的设计与实现
- iOS截图功能案例:TKImageView源码分析
- knowhow-shell: 基于脚本自动化作业的完整tty解释器
- 2011版Flash幻灯片管理系统:多格式图片支持
- Khuli-Hawa计划:城市空气质量与噪音水平记录
- D3-charts:轻松定制笛卡尔图表与动态更新功能
- 红酒品质数据集深度分析与应用
- BlueUtils: 经典蓝牙操作全流程封装库的介绍
- Typeout:简化文本到HTML的转换工具介绍与使用
- LeetCode动态规划面试题494解法精讲
- Android开发中RxJava与Retrofit的网络请求封装实践
- React-Webpack沙箱环境搭建与配置指南