LSSVM-HMM混合预测法:精确解决铲运机电气故障
164 浏览量
更新于2024-09-04
1
收藏 1.97MB PDF 举报
本文主要探讨了"基于优化的LSSVM-HMM混合动力铲运机故障预测"这一主题,针对混合动力铲运机在恶劣工作环境中面临的复杂电气系统、高耦合度故障原因以及非线性数据特性,提出了一个创新的故障预测方法。该方法结合了最小二乘支持向量机(LSSVM)与隐马尔可夫模型(HMM),以提高预测精度。
首先,利用历史运行状态数据对LSSVM进行训练,通过该模型能够预测未来的状态发展趋势。LSSVM的优势在于其能够处理非线性问题,通过寻找最优的惩罚参数和径向基核函数,提升预测的准确性。
接着,通过历史数据训练不同故障状态下的HMM模型,HMM在时序数据建模方面表现出色,能够捕捉状态之间的转移概率和观测序列的关联性,从而预测未来可能出现的故障模式。
然而,传统的LSSVM参数训练(如经验法)和HMM参数选择(如Baum-Welch方法)可能存在陷入局部最优解和收敛速度慢的问题。为了克服这些问题,作者引入了人工鱼群算法(AFSA)来优化参数选择过程,这有助于提高模型的泛化能力和预测稳定性。
研究的核心数据来源于14t混合动力铲运机在实际矿山场景中的运行数据,通过对这些数据的分析和模型训练,能够实时监测设备状态并预测潜在的故障,为维护策略提供科学依据,降低维修成本,保障设备正常运行。
总结来说,这篇文章的主要贡献在于提出了一种基于LSSVM和HMM优化组合的故障预测模型,通过改进参数选择方法,提升了混合动力铲运机电气系统故障的预测精度,对于提升工业设备健康管理具有重要的实践价值。
2023-12-26 上传
2022-07-14 上传
2022-07-14 上传
2021-12-27 上传
2021-09-26 上传
2023-12-26 上传
2020-10-17 上传
2023-04-08 上传
2013-08-26 上传
weixin_38620839
- 粉丝: 8
- 资源: 938
最新资源
- 基于Python和Opencv的车牌识别系统实现
- 我的代码小部件库:统计、MySQL操作与树结构功能
- React初学者入门指南:快速构建并部署你的第一个应用
- Oddish:夜潜CSGO皮肤,智能爬虫技术解析
- 利用REST HaProxy实现haproxy.cfg配置的HTTP接口化
- LeetCode用例构造实践:CMake和GoogleTest的应用
- 快速搭建vulhub靶场:简化docker-compose与vulhub-master下载
- 天秤座术语表:glossariolibras项目安装与使用指南
- 从Vercel到Firebase的全栈Amazon克隆项目指南
- ANU PK大楼Studio 1的3D声效和Ambisonic技术体验
- C#实现的鼠标事件功能演示
- 掌握DP-10:LeetCode超级掉蛋与爆破气球
- C与SDL开发的游戏如何编译至WebAssembly平台
- CastorDOC开源应用程序:文档管理功能与Alfresco集成
- LeetCode用例构造与计算机科学基础:数据结构与设计模式
- 通过travis-nightly-builder实现自动化API与Rake任务构建