最大似然估计与EM算法解析
需积分: 10 80 浏览量
更新于2024-08-20
收藏 9.25MB PPT 举报
"这篇资料主要介绍了EM算法,即极大期望算法在处理大数据时的应用,以及如何解决复杂的优化问题。EM算法常用于统计学中的参数估计,特别是当数据存在隐含变量时的情况。"
EM算法是一种在概率模型中寻找参数估计的有效方法,特别是在处理含有未观测或隐含变量的数据集时。在似然函数最大化的过程中,由于涉及到隐变量,导致求解过程变得复杂。常规的极大似然估计方法难以直接应用,因为求导后会得到涉及"和的对数"的形式,使得优化困难。
为了解决这个问题,引入了Jensen不等式。Jensen不等式是实变函数的一个重要性质,它指出,对于凸函数f和随机变量X,期望运算符E满足不等式E[f(X)] ≥ f(E[X])。利用这一不等式,可以将似然函数的对数转换为"对数的和",简化求导过程,使得参数估计变得更为可行。
在最大期望(EM)算法中,主要有两个步骤:期望(E)阶段和最大化(M)阶段。首先,在E阶段,对当前参数的估计,计算每个观测样本属于不同类别的概率或期望值。然后,在M阶段,根据E阶段得到的信息,更新模型参数,以最大化后验概率,即似然函数。
以身高分布为例,假设有两个群体(例如男生和女生),它们的身高服从不同的高斯分布。如果观测数据中并未标注性别,那么在E阶段,我们需要为每个人估算属于男生群体或女生群体的概率。在M阶段,根据这些概率,分别更新男生和女生的身高分布参数(如均值和方差)。
在解决这种“先有鸡还是先有蛋”的问题时,EM算法通过迭代的方式打破僵局。初始化时,可以任意设定参数,然后在E和M阶段交替进行,每次迭代都会改进参数估计,直到达到收敛,即参数不再显著变化,从而得到最优解。
总结来说,EM算法提供了一种有效处理含有隐变量的模型参数估计方法,通过迭代的方式逐步优化参数,直至找到一个局部最优解。在实际应用中,如机器学习、生物信息学等领域,EM算法都展现出了强大的解决问题的能力。
2020-08-01 上传
327 浏览量
2021-05-30 上传
2021-05-26 上传
2021-07-14 上传
2022-12-24 上传
2021-02-02 上传
2021-05-29 上传
2021-05-29 上传
条之
- 粉丝: 27
- 资源: 2万+
最新资源
- Elasticsearch核心改进:实现Translog与索引线程分离
- 分享个人Vim与Git配置文件管理经验
- 文本动画新体验:textillate插件功能介绍
- Python图像处理库Pillow 2.5.2版本发布
- DeepClassifier:简化文本分类任务的深度学习库
- Java领域恩舒技术深度解析
- 渲染jquery-mentions的markdown-it-jquery-mention插件
- CompbuildREDUX:探索Minecraft的现实主义纹理包
- Nest框架的入门教程与部署指南
- Slack黑暗主题脚本教程:简易安装指南
- JavaScript开发进阶:探索develop-it-master项目
- SafeStbImageSharp:提升安全性与代码重构的图像处理库
- Python图像处理库Pillow 2.5.0版本发布
- mytest仓库功能测试与HTML实践
- MATLAB与Python对比分析——cw-09-jareod源代码探究
- KeyGenerator工具:自动化部署节点密钥生成