大素数p下的2-(v,p,1)设计可解区传递自同构群特性
下载需积分: 5 | PDF格式 | 779KB |
更新于2024-08-11
| 103 浏览量 | 举报
本文探讨的是"2-(v,p,1)设计的可解区传递自同构群"这一主题,其中v和p是关键的变量。在数学的群论与设计理论中,一个2-(v,p,1)设计是一种特殊的数学结构,它是一种有限的点集,每个点被分为p个大小相同的子集,称为块,且每两个不同的点恰好在一个块内有一个共同的子集。这种设计在密码学、编码理论等领域有广泛应用。
论文的核心焦点在于当p为奇素数时,对于给定的对称结构(G,D),其中G是这个2-(v,p,1)设计D的一个可解区传递自同构群。可解区传递自同构群意味着群G的每个非平凡元素都有一个有限阶的循环子群,并且群作用在设计的块上具有传递性。
关键发现是,当设计的点集v满足v>(p^34+1)p-1时,它揭示了关于v的性质。首先,v必须是一个素数q的幂次,这表明v的结构更加简单和特殊。其次,群G的行为也受到限制:要么它是旗传递的,即群作用下的块分布有序,要么它的结构更进一步,G的阶数小于或等于AΓL(1,v),这是线性群的一种特殊情况。
此外,当设计的参数n为奇数时,文章还指出p必须等于q,或者群G的阶数为奇数。这些结果不仅有助于理解此类设计中的群结构,而且可能对相关问题的解决提供关键的理论支持。
这篇论文深入研究了一个特定类型的自同构群与2-(v,p,1)设计之间的关系,特别是在大范围参数下,其结果对于推动群论、设计理论以及相关领域的研究具有重要意义。
相关推荐









weixin_38723810
- 粉丝: 11

最新资源
- 游戏测试笔试攻略:全面解析腾讯、网易等大厂面试题
- 电脑挂机锁v1.3:增强密码安全性的工具
- MNIST数据集快速下载:机器学习手写识别必备
- 批量繁简转化工具:支持ini和txt文件格式
- C#与VB签名ActiveX控件的SignTool工具包详解
- Chrome代理IP用户名密码验证方法详解
- 掌握文件对比工具:轻松找出文件及文件夹的修改差异
- 探索OsbornAI官网源代码:技术栈与服务全解析
- C++环境下的MySQL数据库测试方法
- SSH框架练习:掌握基本操作与框架整合
- IR系列场效应管主要参数详解与应用
- 通过动画轻松学习计算机网络原理与应用
- 实现信号DCT稀疏表示与匹配追踪算法应用
- 蓝色曲线背景个人述职报告PPT模板下载
- 免费下载:12章Windows程序设计精品课件
- Soft7 2.0 BETA 3主题深度体验