尚硅谷大数据项目:实时数仓ClickHouse入门解析
需积分: 13 48 浏览量
更新于2024-07-09
1
收藏 1.9MB PDF 举报
"尚硅谷大数据项目之实时项目-ClickHouse,介绍ClickHouse作为列式存储数据库在实时数据分析领域的应用,强调其特点、SQL支持、多样化的存储引擎和高吞吐写入能力"
ClickHouse是一个由俄罗斯Yandex公司开发并开源的列式存储数据库管理系统(DBMS),主要用于在线分析处理查询(OLAP)场景。它使用C++编程语言实现,并在2016年对外发布。ClickHouse在设计上注重高效处理大数据分析查询,尤其适合实时生成分析数据报告。
**列式存储**是ClickHouse的一大特色。相较于传统的行式存储,列式存储更利于进行聚合、计数和求和等统计操作。在列式存储中,同一列的数据通常具有相同的数据类型,这使得数据能被更有效地压缩,从而节省磁盘空间并优化缓存利用率。例如,对于存储人员信息的表格,列式存储可以快速提取所有人的年龄,而无需遍历整个表格。
**SQL支持**是ClickHouse吸引用户的另一个关键因素。它支持标准SQL的大部分语法,包括数据定义语言(DDL)、数据操纵语言(DML)以及各种函数。此外,还提供了用户管理和权限管理功能,确保数据安全。备份与恢复机制也是ClickHouse DBMS的重要组成部分。
**多样化引擎**是ClickHouse灵活之处。类似于MySQL,ClickHouse允许用户根据不同表的需求选择不同的存储引擎。这些引擎大致分为合并树、日志、接口和其他四大类别,共有20多种,为处理不同类型的查询和工作负载提供了定制化解决方案。
**高吞吐写入能力**是ClickHouse应对大规模实时数据处理的关键。ClickHouse采用了类似LSM-Tree(Log-Structured Merge Tree)的数据结构,这种结构允许高效的数据写入,同时在后台进行定期的Compaction操作,以保持数据的有序性和查询性能。这种设计使得ClickHouse能够在处理大量数据插入的同时,保持对分析查询的响应速度。
ClickHouse是一个专为大数据实时分析设计的高性能数据库系统,通过列式存储、全面的SQL支持、灵活的存储引擎和强大的写入能力,满足了现代企业对数据处理的高速、低延迟和高效率的需求。在大数据领域,尤其是在实时数据分析场景下,ClickHouse是一个值得考虑的解决方案。
2021-11-03 上传
2021-11-03 上传
2022-03-18 上传
2024-01-25 上传
2021-11-03 上传
2022-07-06 上传
2021-11-03 上传
2021-11-03 上传
被迫开卷
- 粉丝: 2
- 资源: 13
最新资源
- Angular实现MarcHayek简历展示应用教程
- Crossbow Spot最新更新 - 获取Chrome扩展新闻
- 量子管道网络优化与Python实现
- Debian系统中APT缓存维护工具的使用方法与实践
- Python模块AccessControl的Windows64位安装文件介绍
- 掌握最新*** Fisher资讯,使用Google Chrome扩展
- Ember应用程序开发流程与环境配置指南
- EZPCOpenSDK_v5.1.2_build***版本更新详情
- Postcode-Finder:利用JavaScript和Google Geocode API实现
- AWS商业交易监控器:航线行为分析与营销策略制定
- AccessControl-4.0b6压缩包详细使用教程
- Python编程实践与技巧汇总
- 使用Sikuli和Python打造颜色求解器项目
- .Net基础视频教程:掌握GDI绘图技术
- 深入理解数据结构与JavaScript实践项目
- 双子座在线裁判系统:提高编程竞赛效率