约束优化:NAS在Synology群晖中的首次应用与凸优化介绍
需积分: 2 50 浏览量
更新于2024-08-09
收藏 6.76MB PDF 举报
本篇文章主要探讨了约束优化在NAS(神经架构搜索)中的应用,特别是在Synology群晖环境下的首次使用教程。章节四(数值计算)详细介绍了优化算法的分类,如一阶和二阶优化方法,以及它们在深度学习中的角色。一阶算法,如梯度下降,仅依赖梯度信息,而二阶算法如牛顿法利用Hessian矩阵,通常在靠近局部极小点时表现优异。然而,由于深度学习中的函数复杂性,这些算法通常缺乏严格的保证。
文章提到了Lipschitz连续性,这是衡量函数变化率的重要概念,它有助于量化优化算法对输入微小变化的响应,对理解梯度下降等算法的行为至关重要。尽管Lipschitz连续性是一个较弱的约束,但在许多深度学习问题中,通过适当的修改,问题可以转化为Lipschitz连续的情况。
凸优化则是提供更强约束和保证的领域,其算法仅适用于凸函数,这类函数没有鞍点且所有局部极小点都是全局最小点,非常适合于一些深度学习问题。然而,实际应用中,深度学习问题往往很难以凸优化形式表达,因此凸优化更多作为子程序使用,其分析思路对于证明算法收敛性很有帮助,但其重要性在深度学习背景下有所降低。
章节还讨论了约束优化,即在给定约束条件下寻找函数的最大值或最小值,这对于在特定集合S内优化问题非常关键。例如,线性最小二乘问题就是一个约束优化实例。同时,文章涉及了机器学习基础,包括学习算法、性能度量、过拟合和欠拟合等概念,这些都是在NAS和深度学习优化过程中必不可少的知识点。
文章最后提到的病态条件和数值计算问题,如梯度和Hessian矩阵的计算,以及上溢和下溢问题,都是在优化过程中可能遇到的技术挑战。本文不仅涵盖了理论概念,还强调了在实际应用中如何处理这些技术难题,对初次接触NAS的用户提供了实用的指导。
2019-07-20 上传
2020-11-05 上传
2024-02-20 上传
2023-05-31 上传
2023-08-14 上传
2023-05-25 上传
2023-07-29 上传
2023-11-17 上传
羊牮
- 粉丝: 41
- 资源: 3857
最新资源
- 全国江河水系图层shp文件包下载
- 点云二值化测试数据集的详细解读
- JDiskCat:跨平台开源磁盘目录工具
- 加密FS模块:实现动态文件加密的Node.js包
- 宠物小精灵记忆配对游戏:强化你的命名记忆
- React入门教程:创建React应用与脚本使用指南
- Linux和Unix文件标记解决方案:贝岭的matlab代码
- Unity射击游戏UI套件:支持C#与多种屏幕布局
- MapboxGL Draw自定义模式:高效切割多边形方法
- C语言课程设计:计算机程序编辑语言的应用与优势
- 吴恩达课程手写实现Python优化器和网络模型
- PFT_2019项目:ft_printf测试器的新版测试规范
- MySQL数据库备份Shell脚本使用指南
- Ohbug扩展实现屏幕录像功能
- Ember CLI 插件:ember-cli-i18n-lazy-lookup 实现高效国际化
- Wireshark网络调试工具:中文支持的网口发包与分析