MATLAB主成分分析实战与函数解析
![](https://csdnimg.cn/release/wenkucmsfe/public/img/starY.0159711c.png)
"MATLAB主成分分析"
主成分分析(PCA, Principal Component Analysis)是一种常见的数据分析技术,用于将高维数据转换成低维空间,同时尽可能保持数据集中的方差信息。这种转换有助于发现数据的主要结构,减少数据冗余,以及在可视化和建模时降低复杂性。在MATLAB中,PCA可以通过几个内置函数来实现。
1. `princomp`
`princomp` 函数是MATLAB中执行主成分分析的核心工具。它基于样本的协方差矩阵进行计算,返回主成分向量(PC)、Z-得分(SCORE)、特征值(latent)以及Hotelling's T^2统计量(tsquare)。主成分向量表示原始数据在新坐标系下的投影,Z-得分为每个样本在新坐标系下的坐标,特征值反映了原始数据方差在新坐标轴上的分布,而Hotelling's T^2统计量用于检测异常值。
例如:
```matlab
X = [281110050; 52120012; ... ]; % 假设这是原始数据
[PC, SCORE, latent, tsquare] = princomp(X);
```
2. `pcacov`
`pcacov` 函数同样进行主成分分析,但其使用的是样本的共协方差矩阵。它返回主成分向量、特征值以及每个特征向量解释的总方差的百分比。与`princomp`不同的是,`pcacov`返回的百分比可以帮助理解每个主成分对整体数据变异的贡献。
```matlab
[PC, latent, explained] = pcacov(X);
```
3. `pcares`
`pcares` 函数用于计算主成分分析的残差。它保留指定数量的主成分,并返回对应的残差。这在检查数据中未被主成分捕获的剩余变异或进行预测时很有用。
```matlab
residuals = pcares(X, ndim); % ndim 是保留的主成分数量
```
4. `barttest`
`barttest` 函数用于执行巴特力特检验(Bartlett's test),这是一种检验数据是否具有同方差性的统计方法。它可以帮助确定数据的最佳主成分数量。如果巴特力特检验显示所有主成分的方差相同,那么可以认为数据适合一维模型;如果第二成分及其余成分的方差也相同,则可能适合二维模型。
```matlab
ndim = barttest(X, alpha); % alpha 是显著性水平
[ndim, prob, chisquare] = barttest(X, alpha); % prob 是p值,chisquare 是卡方统计量
```
在实际应用中,通常会结合这些函数进行主成分分析。例如,首先使用`mean`和`std`函数对数据进行标准化处理,然后调用`princomp`或`pcacov`进行主成分提取,接着可能用`barttest`来决定合适的主成分数量,最后使用`pcares`检查残差。在提供的代码示例中,展示了如何使用这些步骤对给定的数据集`X`进行主成分分析。
383 浏览量
826 浏览量
578 浏览量
201 浏览量
2023-07-09 上传
147 浏览量
162 浏览量
点击了解资源详情
![](https://profile-avatar.csdnimg.cn/default.jpg!1)
iprince008
- 粉丝: 0
最新资源
- 利用jquery和php实现前端高亮点赞效果
- ExtJS中文API文档:学习必备参考手册
- 中国交通标志CTSDB数据集15训练集详细解析
- 移动设备手指滑动图片切换jQuery特效
- 深入解析Oracle分区表技术与应用
- Delphi DLL封装窗体技术详解与Modal模式应用
- SSO系统在Windows平台的安全加固方法研究
- Mercury Bootstrap:创建快速引导组件的HyperScript封装
- 蚁群算法在连续空间多目标优化问题的应用研究
- 蜘蛛侠主题新标签页插件——高清壁纸与游戏
- Windows 64位系统中curl工具的使用与介绍
- 掌握Oracle索引机制与优化工具使用
- C++实现学生成绩管理系统的设计与开发
- PHP开发中的MockForagePHP工具介绍
- 编程必备:全面收录中英文码表资源
- 华胜免费送货单开单软件:简便操作无需注册