MATLAB主成分分析实战与函数解析
3星 · 超过75%的资源 需积分: 18 23 浏览量
更新于2024-09-21
收藏 15KB DOCX 举报
"MATLAB主成分分析"
主成分分析(PCA, Principal Component Analysis)是一种常见的数据分析技术,用于将高维数据转换成低维空间,同时尽可能保持数据集中的方差信息。这种转换有助于发现数据的主要结构,减少数据冗余,以及在可视化和建模时降低复杂性。在MATLAB中,PCA可以通过几个内置函数来实现。
1. `princomp`
`princomp` 函数是MATLAB中执行主成分分析的核心工具。它基于样本的协方差矩阵进行计算,返回主成分向量(PC)、Z-得分(SCORE)、特征值(latent)以及Hotelling's T^2统计量(tsquare)。主成分向量表示原始数据在新坐标系下的投影,Z-得分为每个样本在新坐标系下的坐标,特征值反映了原始数据方差在新坐标轴上的分布,而Hotelling's T^2统计量用于检测异常值。
例如:
```matlab
X = [281110050; 52120012; ... ]; % 假设这是原始数据
[PC, SCORE, latent, tsquare] = princomp(X);
```
2. `pcacov`
`pcacov` 函数同样进行主成分分析,但其使用的是样本的共协方差矩阵。它返回主成分向量、特征值以及每个特征向量解释的总方差的百分比。与`princomp`不同的是,`pcacov`返回的百分比可以帮助理解每个主成分对整体数据变异的贡献。
```matlab
[PC, latent, explained] = pcacov(X);
```
3. `pcares`
`pcares` 函数用于计算主成分分析的残差。它保留指定数量的主成分,并返回对应的残差。这在检查数据中未被主成分捕获的剩余变异或进行预测时很有用。
```matlab
residuals = pcares(X, ndim); % ndim 是保留的主成分数量
```
4. `barttest`
`barttest` 函数用于执行巴特力特检验(Bartlett's test),这是一种检验数据是否具有同方差性的统计方法。它可以帮助确定数据的最佳主成分数量。如果巴特力特检验显示所有主成分的方差相同,那么可以认为数据适合一维模型;如果第二成分及其余成分的方差也相同,则可能适合二维模型。
```matlab
ndim = barttest(X, alpha); % alpha 是显著性水平
[ndim, prob, chisquare] = barttest(X, alpha); % prob 是p值,chisquare 是卡方统计量
```
在实际应用中,通常会结合这些函数进行主成分分析。例如,首先使用`mean`和`std`函数对数据进行标准化处理,然后调用`princomp`或`pcacov`进行主成分提取,接着可能用`barttest`来决定合适的主成分数量,最后使用`pcares`检查残差。在提供的代码示例中,展示了如何使用这些步骤对给定的数据集`X`进行主成分分析。
2022-04-24 上传
123 浏览量
113 浏览量
2015-05-21 上传
2023-07-09 上传
2009-10-20 上传
2011-12-10 上传
2023-07-28 上传
iprince008
- 粉丝: 0
- 资源: 1
最新资源
- NIST REFPROP问题反馈与解决方案存储库
- 掌握LeetCode习题的系统开源答案
- ctop:实现汉字按首字母拼音分类排序的PHP工具
- 微信小程序课程学习——投资融资类产品说明
- Matlab犯罪模拟器开发:探索《当蛮力失败》犯罪惩罚模型
- Java网上招聘系统实战项目源码及部署教程
- OneSky APIPHP5库:PHP5.1及以上版本的API集成
- 实时监控MySQL导入进度的bash脚本技巧
- 使用MATLAB开发交流电压脉冲生成控制系统
- ESP32安全OTA更新:原生API与WebSocket加密传输
- Sonic-Sharp: 基于《刺猬索尼克》的开源C#游戏引擎
- Java文章发布系统源码及部署教程
- CQUPT Python课程代码资源完整分享
- 易语言实现获取目录尺寸的Scripting.FileSystemObject对象方法
- Excel宾果卡生成器:自定义和打印多张卡片
- 使用HALCON实现图像二维码自动读取与解码