多支持度关联规则挖掘算法研究:MS_Apriori算法
需积分: 9 2 浏览量
更新于2024-09-07
收藏 659KB PDF 举报
MS_Apriori算法
MS_Apriori算法是一种多支持度关联规则挖掘算法,由刘兵等人在论文中提出。该算法旨在解决传统关联规则挖掘算法中的不足之处,即只能使用一个统一的最小支持度阈值对整个数据库进行挖掘,而无法满足不同项目的不同支持度需求。
传统的关联规则挖掘算法,如Apriori算法,都是使用一个统一的最小支持度阈值来挖掘整个数据库中的关联规则。然而,在实际应用中,不同的项目可能具有不同的支持度需求。例如,在零售业中,某些商品可能具有很高的销售频率,而其他商品可能只有很少的销售记录。如果使用统一的最小支持度阈值,可能会导致某些规则被忽视,或者某些规则被错误地挖掘出来。
MS_Apriori算法通过引入多个最小支持度阈值来解决这个问题。该算法允许用户为不同的项目设置不同的最小支持度阈值,从而更好地满足实际应用中的需求。例如,在零售业中,可以为不同的商品设置不同的最小支持度阈值,以便更好地挖掘出有用的关联规则。
MS_Apriori算法的主要优点是可以挖掘出更多的关联规则,包括那些涉及到稀有项目的规则。该算法还可以减少计算量,从而提高挖掘效率。
MS_Apriori算法的工作过程可以分为以下几个步骤:
1. 首先,用户需要设置不同的最小支持度阈值 для不同的项目。
2. 接下来,算法将对整个数据库进行扫描,以找到满足最小支持度阈值的项目组合。
3. 然后,算法将对这些项目组合进行关联规则挖掘,以找到满足最小支持度阈值和最小置信度阈值的规则。
4. 最后,算法将输出所有满足条件的关联规则。
MS_Apriori算法在许多实际应用中都具有重要意义,例如零售业、金融业、医疗保健等。该算法可以帮助企业挖掘出更多的关联规则,从而提高业务效率和决策质量。
MS_Apriori算法是一种高效的关联规则挖掘算法,可以满足不同的项目需求,挖掘出更多的关联规则,并提高业务效率和决策质量。
2019-08-26 上传
2018-11-29 上传
2022-09-22 上传
2022-07-13 上传
2021-10-03 上传
2022-07-15 上传
2022-07-15 上传
2022-07-15 上传
liuxuan6107
- 粉丝: 0
- 资源: 1
最新资源
- BottleJS快速入门:演示JavaScript依赖注入优势
- vConsole插件使用教程:输出与复制日志文件
- Node.js v12.7.0版本发布 - 适合高性能Web服务器与网络应用
- Android中实现图片的双指和双击缩放功能
- Anum Pinki英语至乌尔都语开源词典:23000词汇会话
- 三菱电机SLIMDIP智能功率模块在变频洗衣机的应用分析
- 用JavaScript实现的剪刀石头布游戏指南
- Node.js v12.22.1版发布 - 跨平台JavaScript环境新选择
- Infix修复发布:探索新的中缀处理方式
- 罕见疾病酶替代疗法药物非临床研究指导原则报告
- Node.js v10.20.0 版本发布,性能卓越的服务器端JavaScript
- hap-java-client:Java实现的HAP客户端库解析
- Shreyas Satish的GitHub博客自动化静态站点技术解析
- vtomole个人博客网站建设与维护经验分享
- MEAN.JS全栈解决方案:打造MongoDB、Express、AngularJS和Node.js应用
- 东南大学网络空间安全学院复试代码解析