MATLAB实现的数字图像处理技术:傅里叶、离散余弦与Radon变换
版权申诉
7 浏览量
更新于2024-06-24
收藏 1.96MB PDF 举报
"该资源是《数字图像处理》第二版的MATLab代码大全,包含了图像处理中的关键操作,如傅里叶变换、离散余弦变换以及Radon变换的实现示例。"
本文将详细解释这些MATLab代码所涉及的数字图像处理知识点。
1. **傅里叶变换**
傅里叶变换在数字图像处理中用于分析图像的频域特性。在MATLab中,`fft2(B)`函数用于计算二维离散傅里叶变换(2D DFT)针对图像B。`fftshift`函数则用于对结果进行移位,使得低频成分位于中心位置。`imshow(log(abs(C)))`显示的是对变换结果取绝对值后取对数的图像,这样可以更好地可视化高频和低频成分,如图3.7(b)所示。
2. **离散余弦变换(DCT)**
离散余弦变换是一种用于图像压缩的有效方法,例如JPEG格式就基于DCT。MATLab的`dct2(GRAY)`函数用于对灰度图像GRAY执行二维离散余弦变换。对变换后的结果取对数并显示(`imshow(log(abs(DCT)),[])`),有助于观察图像的主要能量分布,如图3.10(b)所示。
3. **Radon变换**
Radon变换是一种线积分变换,用于图像的投影分析,尤其在医学成像中常见。MATLab的`radon`函数用于计算Radon变换。例如,`[R,xp]=radon(GRAY,[0 45])`计算了角度为0°和45°的Radon变换。`plot(xp,R(:,1))`和`plot(xp,R(:,2))`分别显示了这两个角度的投影结果。此外,通过改变角度范围,如`theta=0:180`,可以得到一系列连续角度的Radon变换图像。
这些MATLab代码实例展示了如何在实际应用中进行图像处理操作,它们对于理解图像处理的基本概念和技术非常有帮助。通过对图像进行傅里叶变换和离散余弦变换,可以洞察图像的频率组成;而Radon变换则提供了对图像不同角度投影的洞察,有助于图像重建和分析。
546 浏览量
2022-11-03 上传
2021-10-18 上传
2021-09-14 上传
967 浏览量

omyligaga
- 粉丝: 101
最新资源
- ASP.NET实现上传视频自动抓取首帧图片功能
- PHP实现的单页商城源码—茅台酒专属定制
- 基于SpringMVC+Mybatis+EasyUI的完整后台管理系统开发教程
- fsconsul:实现Consul配置数据的文件系统写入
- C语言CS220课程项目:Spring21版本解读
- C语言实现队列练习:括号匹配检测算法
- VC代码美化工具——美化C++代码的自定义版式设计
- 免费下载个人收集的Timeline资源
- 掌握Excel导入导出:必备jar包解析
- Elasticsearch与EMQTTD集成开发插件
- 实现Excel到LaTeX转换的Javascript工具
- 全新Stereoscopic_Player_1.71 3D播放器注册版体验
- Android 4.4特性解析:实现透明状态栏的简易方法
- 新宁地方婚庆门户网源码发布与测试指南
- C#版固定资产管理系统源码支持SQL和Access数据库
- Spring Boot 应用开发实战:从零开始构建项目