MATLAB实现的数字图像处理技术:傅里叶、离散余弦与Radon变换

版权申诉
0 下载量 121 浏览量 更新于2024-06-24 收藏 1.96MB PDF 举报
"该资源是《数字图像处理》第二版的MATLab代码大全,包含了图像处理中的关键操作,如傅里叶变换、离散余弦变换以及Radon变换的实现示例。" 本文将详细解释这些MATLab代码所涉及的数字图像处理知识点。 1. **傅里叶变换** 傅里叶变换在数字图像处理中用于分析图像的频域特性。在MATLab中,`fft2(B)`函数用于计算二维离散傅里叶变换(2D DFT)针对图像B。`fftshift`函数则用于对结果进行移位,使得低频成分位于中心位置。`imshow(log(abs(C)))`显示的是对变换结果取绝对值后取对数的图像,这样可以更好地可视化高频和低频成分,如图3.7(b)所示。 2. **离散余弦变换(DCT)** 离散余弦变换是一种用于图像压缩的有效方法,例如JPEG格式就基于DCT。MATLab的`dct2(GRAY)`函数用于对灰度图像GRAY执行二维离散余弦变换。对变换后的结果取对数并显示(`imshow(log(abs(DCT)),[])`),有助于观察图像的主要能量分布,如图3.10(b)所示。 3. **Radon变换** Radon变换是一种线积分变换,用于图像的投影分析,尤其在医学成像中常见。MATLab的`radon`函数用于计算Radon变换。例如,`[R,xp]=radon(GRAY,[0 45])`计算了角度为0°和45°的Radon变换。`plot(xp,R(:,1))`和`plot(xp,R(:,2))`分别显示了这两个角度的投影结果。此外,通过改变角度范围,如`theta=0:180`,可以得到一系列连续角度的Radon变换图像。 这些MATLab代码实例展示了如何在实际应用中进行图像处理操作,它们对于理解图像处理的基本概念和技术非常有帮助。通过对图像进行傅里叶变换和离散余弦变换,可以洞察图像的频率组成;而Radon变换则提供了对图像不同角度投影的洞察,有助于图像重建和分析。