DPS教程:多元统计详解,涵盖回归、聚类与判别分析
需积分: 35 201 浏览量
更新于2024-08-01
收藏 1.83MB PDF 举报
DPS教程第四章深入探讨了多元统计分析,这一章节对于理解复杂的数据关系和预测模型至关重要。首先,第22章回归分析涵盖了多种回归技术,包括线性回归(介绍了最小二乘估计方法,用于确定自变量与因变量之间的线性关系,并进行了预测操作),逐步回归(通过逐步增加或删除变量来优化模型),二次多项式回归(处理非线性关系),以及含定性变量的逐步回归(考虑了类别变量对回归的影响)。
岭回归和趋势面分析则针对高维数据和趋势模式进行了处理,分别采用正则化方法和空间相关性的探索。Tobit回归是针对截断数据问题的特殊回归模型,而主成分回归和偏最小二乘回归则是降维工具,用于减少数据维度和提高模型效率。
接着,聚类分析部分涉及系统聚类(处理数量型数据,计算距离并进行分组)、0-1型变量聚类(适用于分类数据的分析)、动态聚类(针对时间序列数据的动态变化)、有序样本分类(最优分割法的应用)以及非线性映射和二维图论聚类,这些方法主要用于数据的无监督分组和相似性挖掘。
判别分析是区分不同类别的关键,第24章分为两组判别、Fisher线性判别和逐步判别分析,Fisher判别强调的是基于线性函数的最佳分类边界,而逐步判别则通过逐步选择特征来提升分类性能。DPS教程通过实际操作示例和详细解释,帮助用户熟练掌握这些多元统计方法,以便在实际项目中有效应用。
2010-08-20 上传
2010-08-20 上传
点击了解资源详情
点击了解资源详情
2010-08-20 上传
2011-09-08 上传
2012-10-26 上传
2011-04-28 上传
2015-05-21 上传
hjr_2000
- 粉丝: 0
- 资源: 4
最新资源
- vue3自定义指令实现图片懒加载
- DummyDataLake:数据湖实现学习
- 【STK+Python仿真】搭建仿真环境调试效果_屏幕录像.mp4.zip
- c代码-出租车记价表
- 温顺:温顺使您的Ruby DSL保持驯服且行为规范
- pr-title-check:基于常规提交的PR标题验证
- React-Redux-Dungeon
- iOS强制屏幕旋转兼容iOS11到iOS17
- Malware-Detection-Using-Two-Dimensional-Binary-Program-Features:使用二维二进制程序功能进行基于深度神经网络的恶意软件检测的文档,源代码和数据链接
- 省份地图系列图标下载
- 实现基于spartan3与CAN总线连接后的的汽车时速的模拟仿真.7z
- ObjectPoolingUnity:在BulletHell游戏中使用Unity中的Top Down Architecture进行ObjectPooling
- awslayer-manager:这是一个简单的工具,可将项目需求构建和上传为AWS Lambda层
- 上传文件FileZilla.zip
- 严峻:用于从pdf中提取页面作为图像和文本作为字符串的工具
- atmacup10:atmacup10的代码