掌握Spark:数据分析师的必修课程

需积分: 12 3 下载量 61 浏览量 更新于2024-07-21 收藏 1.45MB PDF 举报
《Learning Spark》是一本专注于介绍Apache Spark的实用教程,它针对数据分析师这一目标读者群体,强调了在大数据处理领域中Spark技术的重要性,尤其是在与Hadoop进行比较时所展现的优势。本书旨在帮助读者全面理解和掌握Spark的核心组件,包括Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)和GraphX,以及如何在集群管理器上部署Spark。 首先,书的开头部分介绍了Spark的概述,它是一个统一的数据处理平台,提供了并行处理、实时流处理和机器学习等多种功能,适用于数据科学任务和数据处理应用。书中提到,Spark的用户群广泛,涵盖了各种规模的企业和研究机构,他们利用Spark进行大规模数据处理、分析和建模。 第二章主要讲解如何下载和入门Spark,指导读者下载合适的Spark版本,并通过Python和Scala交互式环境来熟悉基本概念,如Spark Context的初始化。此外,还包括了如何编写和运行独立的Spark应用程序,让读者从实践中掌握核心原理。 第三章深入探讨了RDD(Resilient Distributed Datasets)的编程,这是Spark的基础。章节详细阐述了RDD的基本操作,如创建、转换和动作,以及懒加载机制。还讲解了如何将函数传递给Spark,以及Python、Scala和Java的实现差异。此外,还涉及了不同类型RDD之间的转换和持久化(缓存)技术,以提高性能和效率。 第四章则继续扩展到工作流程,可能包括处理更复杂的数据集、数据清洗、数据分析以及使用Spark SQL进行结构化查询等。这部分内容将帮助读者构建完整的Spark项目,提升他们在实际工作中的应用能力。 《Learning Spark》的每一章都围绕着关键知识点展开,适合初学者快速上手Spark,同时对有经验的开发人员提供深入的参考和实践指导。早期版本的反馈和更新也在书中有所提及,确保读者能够获取最新的技术信息。通过阅读这本书,数据分析师不仅能掌握Spark技术,还能了解到其历史发展、与其他工具(如Hadoop)的关系,以及在处理现代数据挑战时的价值。
2017-06-14 上传
Learning Apache Spark 2 by Muhammad Asif Abbasi English | 6 Jun. 2017 | ASIN: B01M7RO7US | 356 Pages | AZW3 | 16.22 MB Key Features Exclusive guide that covers how to get up and running with fast data processing using Apache Spark Explore and exploit various possibilities with Apache Spark using real-world use cases in this book Want to perform efficient data processing at real time? This book will be your one-stop solution. Book Description Spark juggernaut keeps on rolling and getting more and more momentum each day. The core challenge are they key capabilities in Spark (Spark SQL, Spark Streaming, Spark ML, Spark R, Graph X) etc. Having understood the key capabilities, it is important to understand how Spark can be used, in terms of being installed as a Standalone framework or as a part of existing Hadoop installation and configuring with Yarn and Mesos. The next part of the journey after installation is using key components, APIs, Clustering, machine learning APIs, data pipelines, parallel programming. It is important to understand why each framework component is key, how widely it is being used, its stability and pertinent use cases. Once we understand the individual components, we will take a couple of real life advanced analytics examples like: Building a Recommendation system Predicting customer churn The objective of these real life examples is to give the reader confidence of using Spark for real-world problems. What you will learn Overview Big Data Analytics and its importance for organizations and data professionals. Delve into Spark to see how it is different from existing processing platforms Understand the intricacies of various file formats, and how to process them with Apache Spark. Realize how to deploy Spark with YARN, MESOS or a Stand-alone cluster manager. Learn the concepts of Spark SQL, SchemaRDD, Caching, Spark UDFs and working with Hive and Parquet file formats Understand the architecture of Spark MLLib while discussing some of the