没有合适的资源?快使用搜索试试~ 我知道了~
首页ITU-T H.265高效率视频编码标准详解
"HEVCH265-标准文档-022018.pdf.pdf" 是一份关于 High Efficiency Video Coding(HEVC)编码标准的详细技术文档,由国际电信联盟(ITU-T)发布,日期为2018年2月。HEVC,也称为H.265,是继H.264之后新一代的视频编解码标准,旨在提高视频压缩效率,减少带宽需求,同时保持或提高视频质量。
正文:
HEVC/H.265编码标准是视听和多媒体系统基础设施的一部分,尤其关注移动视频的编码。该标准的制定是为了应对日益增长的高清视频和4K、8K超高清视频的需求,这些高分辨率的视频文件通常需要更大的带宽来传输。HEVC通过采用更高级的编码技术和优化的算法,实现了在同等视频质量下,比特率降低约50%的效果,这对于有限带宽的网络环境尤为重要。
在文档中,你可以期待找到关于以下几个关键领域的详细信息:
1. **编码技术**:HEVC引入了更精细的块划分,如四分之一像素和八分之一像素的运动估计,以及更复杂的熵编码,如上下文自适应二进制算术编码(CABAC),这些都提高了压缩效率。此外,还包含了多模式预测、多参考帧选择、去方块滤波器改进等特性。
2. **预测技术**:HEVC支持更多的预测模式,包括基于块的预测、角度预测、自适应预测等,这使得编码器可以根据视频内容选择最佳的预测方式,从而更有效地减少冗余信息。
3. **熵编码**:HEVC采用了改进的熵编码,通过更高效的编码策略,进一步减小了码流的大小,同时保持解码过程的简单性。
4. **工具集**:文档可能详细描述了HEVC的各种编码工具,如TransformSKIP模式、Residual Adaptive Loop Filtering、Intra预测增强、语法元素的优化等,这些都是为了提高压缩性能而设计的。
5. **系统层面**:除了编码核心,标准还可能涵盖了编码器和解码器之间的通信协议,以及如何将HEVC编码的视频流进行传输和存储的规范。
6. **兼容性和互操作性**:文档可能会讨论HEVC与前一代标准H.264/AVC的兼容性,以及与其他视频编解码标准的共存问题,以确保跨平台和跨设备的无缝播放。
7. **测试模型**:为了验证HEVC的性能,可能还包括了测试模型(Test Model, TM)的描述,这些模型用于比较不同编码设置的效果,帮助开发者和研究人员优化编码参数。
"HEVCH265-标准文档-022018.pdf.pdf" 是一个全面的技术参考资料,对于理解HEVC编码的工作原理、实现细节和优化策略至关重要,无论是视频编码器开发者、研究人员还是对高效视频传输感兴趣的从业者,都能从中获益良多。
xiv Rec. ITU-T H.265 v5 (02/2018)
Table D.9 – Definition of content_interpretation_type ................................................................................................... 340
Table D.10 – Interpretation of hash_type ....................................................................................................................... 347
Table D.11 – Definition of counting_type[ i ] values ..................................................................................................... 354
Table D.12 – Definition of segmented_rect_content_interpretation_type ...................................................................... 357
Table D.13 – ver_chroma_filter_idc values .................................................................................................................... 363
Table D.14 – hor_chroma_filter_idc values ................................................................................................................... 363
Table D.15 – Chroma sampling format indicated by target_format_idc ........................................................................ 364
Table D.16 – Constraints on the value of num_vertical_filters ...................................................................................... 365
Table D.17 – Constraints on the value of num_horizontal_filters .................................................................................. 365
Table D.18 – Values of verFilterCoeff and verTapLength when ver_chroma_filter_idc is equal to 2 ........................... 366
Table D.19 – Values of horFilterCoeff and horTapLength when hor_chroma_filter_idc is equal to 2 .......................... 366
Table D.20 – Usage of chroma filter in the vertical direction ........................................................................................ 369
Table D.21 – Usage of chroma filter in the horizontal direction .................................................................................... 371
Table D.22 – rwp_transform_type[ i ] values ................................................................................................................. 384
Table E.1 – Interpretation of sample aspect ratio indicator ............................................................................................ 403
Table E.2 – Meaning of video_format ............................................................................................................................ 404
Table E.3 – Colour primaries interpretation using the colour_primaries syntax element ............................................... 405
Table E.4 – Transfer characteristics interpretation using the transfer_characteristics syntax element ........................... 406
Table E.5 – Matrix coefficients interpretation using the matrix_coeffs syntax element ................................................. 412
Table E.6 – Definition of HorizontalOffsetC and VerticalOffsetC as a function of chroma_format_idc
and ChromaLocType ................................................................................................................................ 414
Table E.7 – Divisor for computation of DpbOutputElementalInterval[ n ] .................................................................... 420
Table F.1 – Mapping of ScalabiltyId to scalability dimensions ...................................................................................... 446
Table F.2 – Mapping of AuxId to the type of auxiliary pictures .................................................................................... 448
Table F.3 – Specification of CompatibleProfileList ....................................................................................................... 494
Table F.4 – Persistence scope of SEI messages (informative) ........................................................................................ 517
Table G.1 – Persistence scope of SEI messages (informative) ....................................................................................... 546
Table G.2 – Association between camera parameter variables and syntax elements ..................................................... 548
Table G.3 – Definition of depth_representation_type .................................................................................................... 550
Table G.4 – Association between depth parameter variables and syntax elements ........................................................ 550
Table G.5 – Association between camera parameter variables and syntax elements. .................................................... 555
Table H.1 – 16-phase luma resampling filter .................................................................................................................. 562
Table H.2 – 16-phase chroma resampling filter .............................................................................................................. 563
Table H.3 – Allowed values for syntax elements in the scalable format range extensions profiles ............................... 574
Table H.4 – Bitstream indications for conformance to scalable range extensions profiles ............................................. 575
Table I.1 – Name association to prediction mode and partitioning type ......................................................................... 607
Table I.2 – Specification of intra prediction mode and associated names ...................................................................... 613
Table I.3 – Specification of divCoeff depending on sDenomDiv ................................................................................... 641
Table I.4 – Association of ctxIdx and syntax elements for each initializationType in the initialization process ........... 654
Table I.5 – Values of initValue for skip_intra_flag ctxIdx ............................................................................................. 655
Rec. ITU-T H.265 v5 (02/2018) xv
Table I.6 – Values of initValue for no_dim_flag ctxIdx ................................................................................................. 655
Table I.7 – Values of initValue for depth_intra_mode_idx_flag ctxIdx ......................................................................... 655
Table I.8 – Values of initValue for skip_intra_mode_idx ctxIdx ................................................................................... 655
Table I.9 – Values of initValue for dbbp_flag ctxIdx ..................................................................................................... 655
Table I.10 – Values of initValue for dc_only_flag ctxIdx .............................................................................................. 655
Table I.11 – Values of initValue for iv_res_pred_weight_idx ctxIdx ............................................................................ 655
Table I.12 – Values of initValue for illu_comp_flag ctxIdx ........................................................................................... 656
Table I.13 – Values of initValue for depth_dc_present_flag ctxIdx ............................................................................... 656
Table I.14 – Values of initValue for depth_dc_abs ctxIdx ............................................................................................. 656
Table I.15 – Syntax elements and associated binarizations ............................................................................................ 657
Table I.16 – Binarization for part_mode ......................................................................................................................... 658
Table I.17 – Assignment of ctxInc to syntax elements with context coded bins ............................................................ 659
Table I.18 – Specification of ctxInc using left and above syntax elements .................................................................... 659
Table I.19 – Persistence scope of SEI messages (informative)....................................................................................... 664
Table I.20 – Interpretation of depth_type ....................................................................................................................... 665
Table I.21 – Locations of the top-left luma samples of constituent pictures packed in a picture with ViewIdx greater
than 0 relative to the top-left luma sample of this picture ............................................................................................... 666
xvi Rec. ITU-T H.265 v5 (02/2018)
Foreword
The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view
to standardizing telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for world-wide standardization. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organization to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.
This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Question 6/16, also known as
VCEG (Video Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture
Experts Group). VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video
coding standard(s) appropriate for a wide range of conversational and non-conversational services. MPEG was formed in
1988 to establish standards for coding of moving pictures and associated audio for various applications such as digital
storage media, distribution, and communication.
In this Recommendation | International Standard Annexes A through I contain normative requirements and are an integral
part of this Recommendation | International Standard.
Rec. ITU-T H.265 v5 (02/2018) 1
Recommendation ITU-T H.265
High efficiency video coding
0 Introduction
0.1 General
This clause and its subclauses do not form an integral part of this Recommendation | International Standard.
0.2 Prologue
As the costs for both processing power and memory have reduced, network support for coded video data has diversified,
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed
video representation with substantially increased coding efficiency and enhanced robustness to network environments.
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) formed a Joint Collaborative Team on Video Coding (JCT-VC) in 2010 and a Joint Collaborative Team on 3D
Video Coding Extension Development (JCT-3V) in 2012 for development of a new
Recommendation | International Standard. This Recommendation | International Standard was developed in the JCT-VC
and the JCT-3V.
0.3 Purpose
This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, internet
streaming, and communications. It is also designed to enable the use of the coded video representation in a flexible manner
for a wide variety of network environments as well as to enable the use of multi-core parallel encoding and decoding
devices. The use of this Recommendation | International Standard allows motion video to be manipulated as a form of
computer data and to be stored on various storage media, transmitted and received over existing and future networks and
distributed on existing and future broadcasting channels. Supports for higher bit depths and enhanced chroma formats,
including the use of full-resolution chroma are provided. Support for scalability enables video transmission on networks
with varying transmission conditions and other scenarios involving multiple bit rate services. Support for multiview
enables representation of video content with multiple camera views and optional auxiliary information. Support for 3D
enables joint representation of video content and depth information with multiple camera views.
0.4 Applications
This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:
Broadcast (cable TV on optical networks / copper, satellite, terrestrial, etc.)
Camcorders
Content production and distribution
Digital cinema
Home cinema
Internet streaming, download and play
Medical imaging
Mobile streaming, broadcast and communications
Real-time conversational services (videoconferencing, videophone, telepresence, etc.)
Remote video surveillance
Storage media (optical disks, digital video tape recorder, etc.)
Wireless display
2 Rec. ITU-T H.265 v5 (02/2018)
0.5 Publication and versions of this Specification
This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group (MPEG). It is published as technically-aligned twin text in both ITU-T and ISO/IEC. As the basis
text has been drafted to become both an ITU-T Recommendation and an ISO/IEC International Standard, the term
"Specification" (with capitalization to indicate that it refers to the whole of the text) is used herein when the text refers to
itself.
This is the fourth version of this Specification.
Rec. ITU-T H.265 | ISO/IEC 23008-2 version 1 refers to the first approved version of this Recommendation | International
Standard. The first edition published by ITU-T as Rec. ITU-T H.265 (04/2013) and by ISO/IEC as ISO/IEC 23008-2:2013
corresponded to the first version.
Rec. ITU-T H.265 | ISO/IEC 23008-2 version 2 refers to the integrated text additionally containing format range
extensions, scalability extensions, multiview extensions, additional supplement enhancement information, and corrections
to various minor defects in the prior content of the Specification. The second edition published by ITU-T as Rec. H.265
(10/2014) and by ISO/IEC as ISO/IEC 23008-2:2015 corresponded to the second version.
Rec. ITU-T H.265 | ISO/IEC 23008-2 version 3 refers to the integrated text additionally containing 3D extensions,
additional supplement enhancement information, and corrections to various minor defects in the prior content of the
Specification. The third edition published by ITU-T as Rec. H.265 (04/2015) corresponded to the third version.
Rec. ITU-T H.265 | ISO/IEC 23008-2 version 4 refers to the integrated text additionally containing screen content coding
extensions profiles, scalable range extensions profiles, additional high throughput profiles, additional supplement
enhancement information, additional colour representation identifiers, and corrections to various minor defects in the prior
content of the Specification. The fourth edition published by ITU-T as Rec. H.265 (12/2016) and by ISO/IEC as ISO/IEC
23008-2:2017 corresponded to the fourth version.
Rec. ITU-T H.265 | ISO/IEC 23008-2 version 5 (the current version) refers to the integrated text additionally containing
additional SEI messages that include omnidirectional video SEI messages, a Monochrome 10 profile, a Main 10 Still
Picture profile, and corrections to various minor defects in the prior content of the Specification.
0.6 Profiles, tiers and levels
This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.
Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets of
the syntax are also stipulated by means of "profiles", "tiers" and "levels". These and other related terms are formally defined
in clause 3.
A "profile" is a subset of the entire bitstream syntax that is specified in this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile, it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economical to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.
In order to deal with this problem, "tiers" and "levels" are specified within each profile. A level of a tier is a specified set
of constraints imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied by
picture height multiplied by number of pictures decoded per second). A level specified for a lower tier is more constrained
than a level specified for a higher tier.
Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.
0.7 Overview of the design characteristics
The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
or video quality. The algorithm is typically not lossless, as the exact source sample values are typically not preserved
through the encoding and decoding processes. A number of techniques may be used to achieve highly efficient
compression. Encoding algorithms (not specified in this Recommendation | International Standard) may select between
剩余691页未读,继续阅读
2404 浏览量
1801 浏览量
1130 浏览量
2021-10-03 上传
783 浏览量
650 浏览量
小马甲不被占用
- 粉丝: 155
- 资源: 14
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 安德罗塞克
- 电气设计笔记.zip
- 自适应蚁群算法在序列比对中的应用.zip
- tiramisu:项目将对从通过caffe处理的图像中提取的特征进行后处理
- Exam24h Helper - Tạo Khóa Học Online-crx插件
- 营运课退换货作业规范
- Algorithm
- 单机版五子棋源码.zip
- Ogre:Ogre 是一个用于使用 OPI 和 OPIOctopus900 的小型视野测量演示应用程序
- 百货常用促销手段
- Formation facile-crx插件
- stepik_lessons
- FFDoku:FFDoku,一个用于Firefox OS的数独!
- 初级java笔试题-brawl:开源大规模斗殴模拟器
- 拉扎鲁斯
- 精美蝴蝶图标下载
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功