Example 5.11 3D general rotation/transformation . . . . . . . . . . . . . . . . 166
Example 5.12 3D scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Example 5.13 3D general reflection—plane parallel to zx-plane . . . . . . 175
Example 5.14 3D general reflection—plane passing through
the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Example 5.15 3D general reflection—a plane and rotating vectors . . . . 179
Example 5.16 3D general shearing . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Example 5.17 3D composite transformations . . . . . . . . . . . . . . . . . . . 185
Example 5.18 Axes translation—point locations . . . . . . . . . . . . . . . . . 188
Example 5.19 Axes rotation—point locations. . . . . . . . . . . . . . . . . . . 189
Example 5.20 Axes scaling—point coordinates . . . . . . . . . . . . . . . . . 192
Example 6.1 Curve drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Example 6.2 Explicit representation—coefficients for quadratic
curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Example 6.3 Explicit representation—points on curves . . . . . . . . . . . 202
Example 6.4 Explicit representation—transformations
of quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Example 6.5 Parametric representation—interpolation matrix
for quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Example 6.6 Parametric representation—general equation
for quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Example 6.7 Parametric representation—coefficients
for quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Example 6.8 Parametric representation—coefficients
for quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Example 6.9 Parametric representation—transformations
of quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Example 6.10 Parametric representation—transformations
of quadratic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Example 6.11 Parametric representation—general equation
of cubic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Example 6.12 Parametric representation—interpolation matrix
for cubic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Example 6.13 Parametric representation—equation of cubic curves . . . 220
Example 6.14 Parametric representation—points on curves . . . . . . . . . 220
Example 6.15 Bézier curves—points on quadratic curves . . . . . . . . . . 227
Example 6.16 Bézier curves—transformations of cubic curves . . . . . . . 231
Example 6.17 Bézier curves—transformations of cubic curves . . . . . . . 233
Example 6.18 Bézier curves—cubic curves in 3D space . . . . . . . . . . . 234
Example 6.19 Bézier curves—points on cubic curves . . . . . . . . . . . . . 234
Example 6.20 Basis function—N
0;2
ðtÞ using uniform knot vector . . . . . 243
Example 6.21 Basis function—N
0;3
ðtÞ using uniform knot vector . . . . . 245
Example 6.22 Basis function—N
i;p
ðtÞ using uniform knot vector . . . . . 249
Examples xix