深度学习入门: Ian Goodfellow、Yoshua Bengio与Aaron Courville详解

需积分: 9 4 下载量 153 浏览量 更新于2024-07-19 收藏 24.39MB PDF 举报
《深度学习》(Deep Learning) 是一本由伊恩·古德费洛(Ian Goodfellow)、约书亚·本吉奥(Yoshua Bengio)和亚伦·库维尔(Aaron Courville)合著的经典之作,它详尽地探讨了深度学习领域的核心理论和技术。该书以深入浅出的方式介绍了深度学习的历史背景和发展趋势,同时涵盖了应用数学和机器学习基础的核心概念。 在第一部分,作者首先针对读者群体进行了介绍,指出这本书不仅适合专业研究人员,也对希望了解这一领域基本原理的工程师和学生具有价值。他们追溯了深度学习自20世纪50年代以来的发展脉络,强调了近年来随着计算能力的提升和技术突破,深度学习的显著崛起。 第二部分," Applied Math and Machine Learning Basics",是理论基础的核心章节。从线性代数开始,书中详细解释了向量、矩阵和张量的基本概念,以及它们在深度学习中的作用。读者可以在这里学习到矩阵乘法、单位矩阵和逆矩阵的性质,理解线性依赖与span的概念,以及不同类型的矩阵和向量的特性。此外,作者还讲解了特征值分解、奇异值分解(SVD)以及 Moore-Penrose 倒数等关键运算,这些都是深度学习模型训练中的基础工具。 接着,概率论和信息论是另一大支柱,这部分探讨了概率在数据处理中的重要性,包括随机变量、概率分布、边缘概率、条件概率、链式规则和独立性等概念。这些理论对于理解深度学习中的不确定性建模和优化至关重要,例如在神经网络中的贝叶斯推理和正则化。 此外,书中的一个重要例子——主成分分析(PCA),展示了这些数学工具如何应用于实际的数据降维问题,这对于特征工程和模型简洁性有着直接关联。 在本书的后续章节中,作者还会深入到神经网络的结构、反向传播算法、激活函数、优化方法以及深度学习的各种架构,如卷积神经网络(CNN)、循环神经网络(RNN)等。整体来说,《深度学习》旨在为读者提供一个扎实的理论基础,使他们能够理解和构建复杂的深度学习系统。无论你是深度学习新手还是经验丰富的研究者,这本书都是一份宝贵的资源。
2017-02-23 上传
'Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.' -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX, Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning., The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models., Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.