树的存储结构:双亲、孩子与兄弟关系解析

需积分: 50 1 下载量 172 浏览量 更新于2024-07-11 收藏 4.03MB PPT 举报
"本资源详细介绍了树的存储结构,包括双亲表示法、孩子表示法、双亲孩子表示法和孩子兄弟表示法,并提到了指针的两种类型:常规指针和仿真指针。内容涵盖了树的基本概念,如树的定义、术语、抽象数据类型以及树的存储结构。" 在计算机科学中,树是一种非线性的数据结构,它由多个节点组成,这些节点通过父子关系相互连接。树的定义具有递归性质,根节点没有前驱节点,而其他节点可以分为若干个互不相交的子树。每个子树本身也是一个树结构。例如,一个有13个节点的树,A是根节点,其余节点根据其所属子集可分为T1、T2、T3,它们各自是A的子树。 在树的定义中,有几个关键术语: 1. **根节点**:树中没有前驱的节点。 2. **度**:节点拥有的子节点数量,节点的度决定了它是叶节点(度为0)还是分支节点(度大于0)。 3. **叶子节点**:没有子节点的节点。 4. **分支节点**:有至少一个子节点的节点。 5. **儿子节点/子节点**:父节点的子节点。 6. **父亲节点/父节点**:子节点的父节点。 7. **兄弟节点**:具有相同父节点的节点。 8. **祖先节点**:路径从某个节点到根节点途经的所有节点。 9. **树的度**:所有节点度的最大值。 10. **结点的层次**:从根节点到该节点的路径上的边数。 11. **树的深度**:树中最远叶子节点的层次。 12. **森林**:由多棵树组成的集合。 树的抽象数据类型(ADT)定义了数据集合和操作集合。数据集合包括树的节点,每个节点包含数据元素和用于构建节点间关系的指针。操作集合可能包括创建树、销毁树、获取双亲、左孩子、右兄弟节点以及遍历树等方法。 树的存储结构主要有以下几种: 1. **双亲表示法**:每个节点存储其父节点的引用,通常适用于度较小的树。 2. **孩子表示法**:每个节点存储其所有子节点的引用,适合度较大的树。 3. **双亲孩子表示法**:结合双亲表示法和孩子表示法,同时存储父节点和子节点的引用。 4. **孩子兄弟表示法**:每个节点除了存储子节点的引用外,还存储同一层的下一个兄弟节点的引用。 指针分为常规指针和仿真指针。常规指针直接指向实际的内存地址,而仿真指针则通过某种方式间接指示节点间的关联。 二叉树是树的一个特殊形式,每个节点最多有两个子节点。二叉树的设计、遍历(前序、中序、后序)和线索二叉树(用于方便地进行遍历)是二叉树的重要概念。此外,哈夫曼树是一种特殊的二叉树,用于数据压缩,通过最小带权路径长度来构建。 树与二叉树的转换是指将一般树转化为二叉树的过程,这在某些算法中可能会用到。而树的遍历是访问树中所有节点的过程,包括深度优先遍历(DFS,包括前序、中序、后序)和广度优先遍历(BFS)。 了解和掌握这些知识点对于理解和处理复杂的数据结构问题至关重要,尤其在算法设计、数据库系统、编译器等领域有着广泛的应用。