基于人脸跟踪的在线考试神态分析防作弊系统
需积分: 10 120 浏览量
更新于2024-07-14
收藏 951KB PDF 举报
"考生神态管理系统.pdf"这篇毕业论文主要探讨了如何运用计算机视觉和人脸识别技术来分析考生的神态,以此判断是否存在作弊行为。论文的核心是构建一个在线考试中的神态分析系统,通过对考生面部和眼睛的实时检测与跟踪,来辅助识别异常行为。
在第一章绪论中,作者介绍了研究背景,指出在当前信息化社会,人脸识别技术已经成为一个热门研究领域,特别是在安全监控、身份验证等方面有广泛应用。然而,在线考试场景下的作弊检测尚未得到充分开发,这正是本研究的出发点。研究内容包括人脸图像的预处理、人脸检测与追踪、视线估计以及神态分析系统的实现。
第二章人脸图像预处理部分,强调了预处理在人脸识别中的重要性,包括灰度转换等步骤,为后续的特征提取和分析打下基础。
第三章详细阐述了几种人脸检测和追踪的方法,如运动目标检测和目标跟踪分类,并提及了视线估计的几种技术,这些都是实现神态分析的关键环节。
第四章专注于HAAR分类器,这是一种常用的人脸检测技术,由HAAR特征和积分图组成,能有效地计算特征值,为快速人脸检测提供可能。
第五章讨论了AdaBoost算法和级联分类器,AdaBoost是一种集成学习算法,通过构建多个弱分类器并组合成强分类器,以提高识别的准确性和鲁棒性。级联分类器则用于优化检测速度,减少非人脸区域的误报。
第六章介绍了考生神态分析系统的具体实现,包括实验环境的搭建,如使用OpenCV平台,系统功能的描述,以及检测、跟踪和识别的具体流程。
最后,第七章总结了研究成果,并提出了未来可能的研究方向,比如改进现有算法,提高神态分析的准确性和实时性,以及扩大应用范围,比如应用于远程教育、职场评估等领域。
这篇论文深入研究了在线考试中利用计算机视觉技术进行神态分析的可能性,为防止作弊提供了新的思路,同时展示了人脸识别和追踪技术在实际问题中的应用潜力。
2021-10-10 上传
2021-09-18 上传
2021-10-14 上传
2021-10-11 上传
2021-11-01 上传
144 浏览量
2021-10-14 上传

lljjxx12138
- 粉丝: 0
最新资源
- UniMob.UI:Unity中实现React式UI的声明性框架
- 实现if翻译程序设计:简单优先法与四元式输出
- GTA V 1.48版本内部Mod菜单由SeanGhost修改更新
- 深入解析XML的Dom技术应用与源码工具
- 正点原子Mini开发板RC522刷卡程序与触摸屏显示指南
- Bonoeil-game:探索浏览器平台的2D像素艺术游戏引擎
- Renaun开发的RemoteObjectAMF0组件: 快速交互ASP.NET类
- Windows 7 WinHlp32帮助程序安装包解析
- GurbsStarTrek开源项目:控制播放与内容生成功能
- 央视图片恶搞生成器:安全娱乐软件
- 批量删除文件夹中.svn脚本的实用工具
- C ++与SFML打造的Super Mario Kart复刻版
- JavaScript实用校验工具源码分享
- TortoiseSVN 1.8.11-x64版本发布及汉化包下载
- Matlab伪旋转GUI开源工具:五元环系统构象分析
- 深入解析数据挖掘与SPSS Clementine案例应用