iOS应用入门:利用CoreML实现机器学习

需积分: 9 20 下载量 165 浏览量 更新于2024-07-17 1 收藏 6.63MB PDF 举报
"《iOS中的机器学习入门:CoreML框架指南》是一本深入浅出的教程,由Mohit Thakkar编著,帮助读者在iOS应用开发中实现和利用机器学习技术。该书首先概述了机器学习的基本原理,然后专注于讲解更高级的主题,特别是苹果产品中用于支持机器学习任务的核心框架——CoreML。 在当今的iPhone应用中,机器学习无所不在,例如Siri通过语音识别处理用户请求,Photos应用依赖面部识别功能,而Facebook则通过算法推荐照片中可能的人脸。本书将带你了解这些机器学习任务是如何在实际应用中设计和执行的,使你能够将这些技术应用到自己的iOS应用中。 本书涵盖了以下关键知识点: 1. **机器学习基础**:介绍机器学习的概念、类型(如监督学习、无监督学习、强化学习)以及它们在解决问题中的作用,为后续的CoreML实践打下坚实的基础。 2. **CoreML框架介绍**:详细解释CoreML框架的工作原理,包括模型的导入、转换、优化和集成到iOS应用的过程。读者将了解到如何使用Swift或Objective-C与CoreML进行交互,并利用Xcode工具链。 3. **模型构建与训练**:探讨如何从数据集创建、预处理到训练模型,包括选择合适的算法、训练策略和模型评估。对于没有编程背景的开发者,书中也会提供易懂的示例和指导。 4. **实战项目**:通过实际项目演示如何在iOS应用中部署和使用CoreML模型,如图像分类、语音识别和推荐系统等,让读者在实践中提升技能。 5. **性能优化与调试**:讨论如何优化模型在移动设备上的运行效率,以及如何解决可能出现的问题,如内存管理、模型大小限制等。 6. **安全性与隐私保护**:强调在iOS环境中处理用户数据时应遵循的最佳实践,确保机器学习应用符合Apple的数据安全政策。 《iOS中的机器学习入门:CoreML框架》不仅是iOS开发者学习和掌握机器学习技术的实用指南,也是希望在移动应用中引入智能功能的设计师和技术人员的理想参考书。通过这本书,读者将能更好地理解和利用CoreML框架,为自己的iOS应用带来强大的智能化体验。"
217 浏览量
Leverage the power of Apple's Core ML to create smart iOS apps Key Features Explore the concepts of machine learning and Apple's Core ML APIs Use Core ML to understand and transform images and videos Exploit the power of using CNN and RNN in iOS applications Book Description Core ML is a popular framework by Apple, with APIs designed to support various machine learning tasks. It allows you to train your machine learning models and then integrate them into your iOS apps. Machine Learning with Core ML is a fun and practical guide that not only demystifies Core ML but also sheds light on machine learning. In this book, you'll walk through realistic and interesting examples of machine learning in the context of mobile platforms (specifically iOS). You'll learn to implement Core ML for visual-based applications using the principles of transfer learning and neural networks. Having got to grips with the basics, you'll discover a series of seven examples, each providing a new use-case that uncovers how machine learning can be applied along with the related concepts. By the end of the book, you will have the skills required to put machine learning to work in their own applications, using the Core ML APIs What you will learn Understand components of an ML project using algorithms, problems, and data Master Core ML by obtaining and importing machine learning model, and generate classes Prepare data for machine learning model and interpret results for optimized solutions Create and optimize custom layers for unsupported layers Apply CoreML to image and video data using CNN Learn the qualities of RNN to recognize sketches, and augment drawing Use Core ML transfer learning to execute style transfer on images Who This Book Is For Machine Learning with Core ML is for you if you are an intermediate iOS developer interested in applying machine learning to your mobile apps. This book is also for those who are machine learning developers or deep learning practitioners who want to bring the power of neural networks in their iOS apps. Some exposure to machine learning concepts would be beneficial but not essential, as this book acts as a launchpad into the world of machine learning for developers. Table of Contents Introduction to Machine Learning Introduction to Apple Core ML Recognising objects in the world Locating Objects in the World Facial Emotion Detection with Convolutional Neural Networks Transfer Learning - Creating art with style transfer Assisted drawing with Convolutional Neural Networks Assisted drawing with Recurrent Neural Networks Object segmentation using neural networks An introduction to Create ML