PCIe技术详解:从总线到物理层

需积分: 12 6 下载量 71 浏览量 更新于2024-08-17 收藏 1.18MB PPT 举报
本文将深入探讨PCIe(Peripheral Component Interconnect Express)插槽上的各种信号,包括PCIe的概述、总线层次结构、事务层、数据链路层和物理层等核心概念。 PCIe总线概述 PCIe,最初被称为3GIO,是由英特尔在2002年提出的一种高速接口标准,旨在取代传统的PCI和PCI-X总线。后来,它由PCI-SIG(PCI特殊兴趣组)进行认证并更名为PCI-Express。PCIe的最大优点在于其高速数据传输能力,例如,16x3.0版本可以实现16GB/s的速率,随着技术的发展,其速度不断提升,如2.0版本的5Gb/s和3.0版本的8Gb/s。 PCIe总线层次结构 PCIe总线的架构由多个层次组成,包括事务层、数据链路层和物理层。这三层结构共同协作,确保数据高效、可靠地在主机系统和外设之间传输。PCIe端口能够通过Switch进行链路扩展,以支持更复杂的系统布局,其中每个端口能连接一个Endpoint(终端设备)。 事务层 事务层是PCIe通信的上层,负责处理来自PCIe设备核心层的事务请求。它将这些请求封装成TLP(Transaction Layer Packet,事务层包),并转发给数据链路层。TLP包含了多种类型的报文,如内存读/写请求和完成、原子操作、I/O读写和配置读写以及消息报文。TLP格式包括头信息、数据负载和校验信息,其中TLPHeader的Fmt字段用于定义TLP的类型,Type字段指示报文的类别,而Length字段则指明数据的长度。 数据链路层 数据链路层负责在物理层提供的连接上无差错地传输TLP。它处理错误检测与恢复,确保数据的完整性。在这一层,TLP会被拆分成较小的单元——DLLP(Data Link Layer Packet),以便于物理层传输。此外,数据链路层还使用信用机制来管理数据流,避免拥塞。 物理层 物理层是PCIe架构的底层,负责实际的电气或光信号传输。它定义了信号的编码、时钟同步和物理连接,确保在PCIe端口间的数据传输。物理层的设计必须考虑到信号完整性、电源管理和热管理等问题,以满足高速传输的需求。 PCIe总线拓扑结构 PCIe总线采用端到端的连接方式,即每个PCIe端口直接连接一个Endpoint设备。这种设计减少了信号传输的跳数,提高了效率。通过Switch,系统可以构建更复杂、多层级的拓扑,允许更多的设备连接。 总结 PCIe作为现代计算机系统中的关键接口标准,其高速、低延迟的特性使得它广泛应用于显卡、网卡、硬盘等高速外设。了解PCIe的各层结构和工作原理,有助于我们更好地理解系统性能和设备间的通信方式,从而优化系统设计和故障排查。
2014-09-15 上传
Traditional multi-drop, parallel bus technology is approaching its practical performance limits. It is clear that balancing system performance requires I/O bandwidth to scale with processing and application demands. There is an industry mandate to re-engineer I/O connectivity within cost constraints. PCI Express comprehends the many I/O requirements presented across the spectrum of computing and communications platforms, and rolls them into a common scalable and extensible I/O industry specification. Alongside these increasing performance demands, the enterprise server and communications markets have the need for improved reliability, security, and quality of service guarantees. This specification will therefore be applicable to multiple market segments. Technology advances in high-speed, point-to-point interconnects enable us to break away from the bandwidth limitations of multi-drop, parallel buses. The PCI Express basic physical layer consists of a differential transmit pair and a differential receive pair. Dual simplex data on these point-to-point connections is self-clocked and its bandwidth increases linearly with interconnect width and frequency. PCI Express takes an additional step of including a message space within its bus protocol that is used to implement legacy “side- band” signals. This further reduction of signal pins produces a very low pin count connection for components and adapters. The PCI Express Transaction, Data Link, and Physical Layers are optimized for chip-to-chip and board-to-board interconnect applications. An inherent limitation of today’s PCI-based platforms is the lack of support for isochronous data delivery, an attribute that is especially important to streaming media applications. To enable these emerging applications, PCI Express adds a virtual channel mechanism. In addition to use for support of isochronous traffic, the virtual channel mechanism provides an infrastructure for future extensions in supporting new applications. By adhering to the PCI Software Model, today’s applications are easily migrated even as emerging applications are enabled.