高效行人检测:轮廓粗筛与HOG细粒度结合

1 下载量 112 浏览量 更新于2024-08-31 收藏 300KB PDF 举报
本文介绍了一种结合轮廓粗筛和HOG细分的快速行人检测方法,旨在解决当前行人检测技术中存在的虚警率高和运算效率低的问题。方法的实施分为两个关键步骤: 1. 轮廓粗筛:首先,利用轮廓的几何特征进行初步筛选。通过检测图像中的边缘和形状,这种方法可以快速识别出可能包含行人的区域,减少不必要的计算。接着,利用轮廓的不变矩特征进行第二层筛选,这是对第一层筛选结果的进一步确认,有助于去除那些形状和位置不符合行人特征的目标,从而降低虚警率。 2. HOG细分与线性SVM分类:在确定了可疑图像块后,只对这些区域提取HOG特征,这是为了减少计算负担,提高运算效率。HOG是一种用于描述局部纹理的特征,它能够捕捉到物体在空间上的局部结构。通过与线性支持向量机(SVM)相结合,进行特征分类,这种方法具有较高的分类准确性和鲁棒性,有助于进一步降低虚警率,即误报的可能性。 这种方法的优势在于,通过针对性地在可疑区域提取HOG特征,而不是在整个图像上进行,极大地降低了特征提取的时间消耗。同时,轮廓粗筛和HOG细分的结合使得算法能够更精确地定位行人,避免了过多的误判。实验结果显示,该方法在INRIA数据集上进行了训练,而在Caltech数据集上进行验证,证明了其在行人检测中的虚警率较低且运算效率较高,适应于对速度和准确性有较高要求的应用场景,如视频监控和图像搜索。 本文提出的方法提供了一种有效的方法来改进现有的行人检测技术,通过减少冗余计算和提高特征选择的精度,实现了更快、更准确的行人检测,对于实际应用中的高效性能提升具有重要意义。
2025-03-06 上传
【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip