Storm入门:流式计算基础与核心组件解析
需积分: 0 42 浏览量
更新于2024-09-03
收藏 346KB DOCX 举报
"01_流式计算基础_第1天(Storm是什么、Storm核心组件、Storm编程模型).docx"
这篇文档主要介绍了大数据领域的流式计算基础,特别是聚焦于Apache Storm框架。课程旨在帮助学习者理解离线计算与流式计算的区别,并深入掌握Storm的核心组件和编程模型。
首先,离线计算被定义为批量处理数据的过程,包括数据的获取、传输、计算和展示。代表性技术包括使用Sqoop进行数据导入,HDFS进行批量数据存储,MapReduce进行批量计算,以及Hive和任务调度平台进行数据分析。离线计算通常涉及数据仓库模型架构、数据清洗、元数据管理、数据稽查等多个环节。
流式计算则关注实时数据处理,它涉及实时数据的生成、传输、计算和显示。技术实例包括Flume实时数据采集,Kafka或MetaQ作为实时数据存储,Storm或JStorm进行实时计算,Redis用于实时结果缓存,以及MySQL等数据库进行持久化存储。流式计算的核心是快速响应不断产生的数据,提供及时的计算结果。
接下来,文档对比了离线计算与流式计算的主要区别,强调了流式计算的实时性,即实时收集、计算和展示数据的能力。Storm作为一种流式计算框架,其特点是低延迟、高可用性、分布式结构、可扩展性和数据不丢失。Storm提供了易于理解和开发的接口,特别适合处理大规模、多类型数据的实时处理需求。
Storm与Hadoop的差异在于,Storm专注于实时计算,处理的数据保持在内存中,而Hadoop主要用于离线计算,处理的数据存储在文件系统。此外,Storm的数据流通过网络传输,而Hadoop的数据存储在磁盘上。尽管两者的编程模型有相似之处,如Job、JobTracker、TaskTracker等概念,但它们在应用场景和数据处理模式上存在显著不同。
在课程内容中,"Storm的核心组件(重点掌握)"和"Storm的编程模型(重点掌握)"部分,可能涵盖了 Nimbus(资源调度器)、Supervisor(工作节点)、Worker(任务进程)、Tuple(数据结构)等关键概念,以及Topology(拓扑结构)、Spout(数据源)和Bolt(数据处理组件)的编程模型。这部分内容对于实际操作和开发Storm应用至关重要。
最后,"流式计算的一般架构图(重点掌握)"可能涉及到数据源、数据传输层、计算层和结果展示层的结构,展示了如何从数据生成到最终结果的完整流程。
这份文档为学习者提供了一个全面的入门指南,涵盖了Storm的基本概念、与Hadoop的区别以及流式计算的架构和核心组件,是深入了解实时大数据处理的宝贵资源。
2020-03-22 上传
2020-06-12 上传
2021-10-14 上传
2023-11-05 上传
2023-11-05 上传
2023-10-07 上传
2021-11-14 上传
2021-06-23 上传
铲屎小仙女
- 粉丝: 1
- 资源: 21
最新资源
- app:詹金斯的应用程序
- react-hot-export-loader:一个Webpack加载器,自动插入react-hot-loader代码,灵感来自react-hot-loader-loader
- DIY制作属于自己的CP2102 USB-UART桥接器(原理图+PCB源文件)-电路方案
- 雅典:开源网络思想。 内部封闭测试正在进行中! 通过https:forms.gle9L1D1T7R3G7pvh1e7加入候补名单。 赞助我们以更快获得测试版!
- uni-app之flex布局教程 uniapp在线教程 uni app视频教程
- jamesSampica.github.io:自己的博客
- Android动画效果源代码
- 教师招聘学习软件支持幼儿教师招聘,小学中学教师招聘,小学中学教育学心理学等等
- LoveAndShare:基于Python django建造的知识分享与视频播放网站
- fp-gitlab-example:用于转换API请求以使用fp-ts的示例代码
- 彻底搞懂Spring+SpringMVC+MyBatis 框架整合(IDEA版,含源码)
- EmployeeWageComputation
- my-first-webpage
- getting_cleaning_data:回购获取和清洁数据; JHU课程; 数据科学专业
- MPLAB ICD2仿真器原理图+PCB+HEX文件-电路方案
- 灰白经典婚纱照网站模板