R语言数据挖掘实战:决策树、聚类与文本分析
需积分: 10 33 浏览量
更新于2024-07-22
收藏 2.17MB PDF 举报
"《用R做数据挖掘》是由Yanchang Zhao编著的一份关于使用R语言进行数据挖掘的资料,涵盖了决策树、聚类和文本挖掘等多个主题。该资源提供了示例和案例研究,但具体的内容不包含在这个简化的版本中,仅在书本版本中提供。最新在线版本可以在作者的网站上找到,同时也提供了R数据挖掘的参考卡片、相关的R代码、数据和常见问题解答。读者可以通过RDataMining小组或直接向作者发送邮件提出问题或反馈。此外,还有一个专门讨论R和数据挖掘的论坛,以及一个Twitter账号@RDataMining可以关注。还有一本相关的书籍《Data Mining Application with R》可供进一步学习。"
在这份资源中,主要的知识点包括:
1. **R语言基础**:R是一种广泛用于统计分析和图形可视化的开源编程语言,尤其适合数据挖掘任务。它拥有丰富的库和工具,如`caret`、`randomForest`、`cluster`和`tm`等,用于构建决策树、执行聚类分析和处理文本数据。
2. **决策树**:决策树是一种监督学习方法,通过构建树状模型来做出预测。在R中,可以使用`rpart`包创建决策树,它能够处理分类和回归问题,并支持特征选择和剪枝。
3. **聚类**:聚类是无监督学习的一种,目的是将数据集中的样本分成不同的组或簇。R中的`kmeans`、`hclust`和`agnes`等函数可以帮助进行不同类型的聚类算法,如K均值、层次聚类等。
4. **文本挖掘**:R的`tm`(文本挖掘)和`SnowballC`包提供了处理文本数据的功能,包括预处理(如去除停用词、词干提取)、创建词袋模型、情感分析等。
5. **案例研究**:虽然此资源的简版未包含具体的案例,但在完整版书籍中,可能包含实际的数据挖掘项目实例,这些案例有助于读者将理论知识应用到实践中。
6. **RCode与数据**:作者提供了R代码、数据和常见问题解答,这为学习者提供了实践操作的机会,能够直接运行代码并理解数据挖掘过程。
7. **交流平台**:RDataMining小组和Twitter账号提供了与作者和其他学习者的互动渠道,可以讨论问题、分享经验或获取最新资讯。
通过这份资源,学习者可以全面了解如何利用R语言进行数据挖掘,从基础概念到具体实施,覆盖了数据预处理、建模和结果解释等多个环节。
2014-12-28 上传
2018-05-20 上传
2024-10-09 上传
2015-10-18 上传
2011-04-25 上传
103 浏览量
szdbl
- 粉丝: 30
- 资源: 4
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用