没有合适的资源?快使用搜索试试~ 我知道了~
首页ANSYS Fluent 15.0用户手册:全面教程与注意事项
ANSYS Fluent 15.0用户手册:全面教程与注意事项
需积分: 29 5 下载量 121 浏览量
更新于2024-07-17
收藏 40.63MB PDF 举报
ANSYS Fluent User's Guide是ANSYS公司于2013年11月发布的第15.0版文档,主要针对该公司的流体动力学仿真软件FLUENT进行详尽的用户手册。该指南旨在为用户提供全面的指导,包括软件的安装、配置、操作流程以及注意事项,确保用户能够有效地利用FLUENT进行复杂工程问题的模拟分析。
在本指南中,重点介绍了以下知识点:
1. 软件概述:强调了FLUENT作为ANSYS Workbench的一部分,是用于解决各种流体力学问题的工具,如热对流、压力流动、多相流等。
2. 系统要求:明确了运行FLUENT所需的硬件和软件环境,包括操作系统、处理器、内存和图形处理单元(GPU)的要求。
3. 安装与配置:详细步骤说明如何正确安装和配置FLUENT,包括许可证管理、设置首选项以及与其他ANSYS产品(如CFX和HFSS)的集成。
4. 用户界面:展示了FLUENT的用户界面,解释了各个功能区域的作用,以及如何导航和使用关键工具如网格生成器、求解器选项、后处理模块等。
5. 工作流程示例:提供了多个实际工程案例,通过实例演示如何应用FLUENT解决不同领域的流体力学问题,如航空航天、汽车工程、能源系统等。
6. 最佳实践与技巧:分享了使用FLUENT时应注意的技巧和避免常见错误的建议,帮助用户提高工作效率和结果的准确性。
7. 性能优化:针对大型复杂模拟,讨论了如何优化网格质量、选择合适的求解器算法以及调整计算资源以提升计算效率。
8. 安全与保密:强调了版权和商标信息,声明未经授权的使用、复制或分发是被禁止的,并提醒用户软件中的商业秘密和专有信息的保护。
9. 联系我们:提供了ANSYS客户服务的联系方式,以便用户在遇到问题时寻求帮助或反馈。
10. 法律免责声明:明确了软件的使用限制,提示用户在使用过程中可能存在风险,软件产品和文档可能包含受版权保护的信息,不得随意泄露。
ANYSYS Fluent User's Guide是所有希望在FLUENT中深入学习和专业应用流体力学模拟的工程师和研究人员不可或缺的参考资料。通过遵循本指南,用户将能更熟练地掌握这款强大的工具,解决实际工程问题并提升科研成果的质量。
6.5.2.2. Sample User-Defined Fan Program ............................................................................... 373
6.5.2.3. Initializing the Flow Field and Profile Files ..................................................................... 374
6.5.2.4. Selecting the Profiles ................................................................................................... 374
6.5.2.5. Performing the Calculation .......................................................................................... 375
6.5.2.6. Results ........................................................................................................................ 376
6.6. Profiles ......................................................................................................................................... 377
6.6.1. Profile Specification Types .................................................................................................... 377
6.6.2. Profile File Format ................................................................................................................ 378
6.6.2.1. Example ...................................................................................................................... 379
6.6.3. Using Profiles ....................................................................................................................... 380
6.6.3.1. Checking and Deleting Profiles .................................................................................... 381
6.6.3.2.Viewing Profile Data ..................................................................................................... 382
6.6.3.3. Example ...................................................................................................................... 382
6.6.4. Reorienting Profiles .............................................................................................................. 383
6.6.4.1. Steps for Changing the Profile Orientation ................................................................... 383
6.6.4.2. Profile Orienting Example ............................................................................................ 386
6.6.5. Defining Transient Cell Zone and Boundary Conditions ......................................................... 388
6.6.5.1. Standard Transient Profiles ........................................................................................... 389
6.6.5.2.Tabular Transient Profiles .............................................................................................. 390
6.7. Coupling Boundary Conditions with GT-Power .............................................................................. 391
6.7.1. Requirements and Restrictions ............................................................................................. 391
6.7.2. User Inputs ........................................................................................................................... 392
6.8. Coupling Boundary Conditions with WAVE .................................................................................... 393
6.8.1. Requirements and Restrictions ............................................................................................. 394
6.8.2. User Inputs ........................................................................................................................... 395
7. Physical Properties .............................................................................................................................. 397
7.1. Defining Materials ......................................................................................................................... 397
7.1.1. Physical Properties for Solid Materials ................................................................................... 398
7.1.2. Material Types and Databases ............................................................................................... 398
7.1.3. Using the Materials Task Page ............................................................................................... 399
7.1.3.1. Modifying Properties of an Existing Material ................................................................. 400
7.1.3.2. Renaming an Existing Material ..................................................................................... 400
7.1.3.3. Copying Materials from the ANSYS Fluent Database ..................................................... 401
7.1.3.4. Creating a New Material ............................................................................................... 403
7.1.3.5. Saving Materials and Properties ................................................................................... 403
7.1.3.6. Deleting a Material ...................................................................................................... 403
7.1.3.7. Changing the Order of the Materials List ...................................................................... 404
7.1.4. Using a User-Defined Materials Database .............................................................................. 404
7.1.4.1. Opening a User-Defined Database ............................................................................... 405
7.1.4.2.Viewing Materials in a User-Defined Database .............................................................. 405
7.1.4.3. Copying Materials from a User-Defined Database ......................................................... 406
7.1.4.4. Copying Materials from the Case to a User-Defined Database ....................................... 407
7.1.4.5. Modifying Properties of an Existing Material ................................................................. 408
7.1.4.6. Creating a New Materials Database and Materials ......................................................... 408
7.1.4.7. Deleting Materials from a Database .............................................................................. 411
7.2. Defining Properties Using Temperature-Dependent Functions ....................................................... 412
7.2.1. Inputs for Polynomial Functions ............................................................................................ 412
7.2.2. Inputs for Piecewise-Linear Functions ................................................................................... 413
7.2.3. Inputs for Piecewise-Polynomial Functions ............................................................................ 415
7.2.4. Checking and Modifying Existing Profiles .............................................................................. 416
7.3. Density ......................................................................................................................................... 416
7.3.1. Defining Density for Various Flow Regimes ........................................................................... 416
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xvi
User's Guide
7.3.1.1. Mixing Density Relationships in Multiple-Zone Models ................................................. 417
7.3.2. Input of Constant Density ..................................................................................................... 417
7.3.3. Inputs for the Boussinesq Approximation .............................................................................. 417
7.3.4. Compressible Liquid Density Method ................................................................................... 417
7.3.4.1. Compressible Liquid Inputs .......................................................................................... 418
7.3.4.2. Compressible Liquid Density Method Availability ......................................................... 420
7.3.5. Density as a Profile Function of Temperature ......................................................................... 421
7.3.6. Incompressible Ideal Gas Law ............................................................................................... 421
7.3.6.1. Density Inputs for the Incompressible Ideal Gas Law ..................................................... 421
7.3.7. Ideal Gas Law for Compressible Flows ................................................................................... 422
7.3.7.1. Density Inputs for the Ideal Gas Law for Compressible Flows ......................................... 422
7.3.8. Composition-Dependent Density for Multicomponent Mixtures ............................................ 423
7.4. Viscosity ....................................................................................................................................... 424
7.4.1. Input of Constant Viscosity ................................................................................................... 425
7.4.2.Viscosity as a Function of Temperature .................................................................................. 425
7.4.2.1. Sutherland Viscosity Law ............................................................................................. 426
7.4.2.1.1. Inputs for Sutherland’s Law ................................................................................. 426
7.4.2.2. Power-Law Viscosity Law ............................................................................................. 427
7.4.2.2.1. Inputs for the Power Law ..................................................................................... 427
7.4.3. Defining the Viscosity Using Kinetic Theory ........................................................................... 428
7.4.4. Composition-Dependent Viscosity for Multicomponent Mixtures .......................................... 428
7.4.5.Viscosity for Non-Newtonian Fluids ....................................................................................... 429
7.4.5.1.Temperature Dependent Viscosity ................................................................................ 430
7.4.5.2. Power Law for Non-Newtonian Viscosity ....................................................................... 431
7.4.5.2.1. Inputs for the Non-Newtonian Power Law ............................................................ 431
7.4.5.3.The Carreau Model for Pseudo-Plastics ......................................................................... 431
7.4.5.3.1. Inputs for the Carreau Model ............................................................................... 432
7.4.5.4. Cross Model ................................................................................................................ 432
7.4.5.4.1. Inputs for the Cross Model ................................................................................... 433
7.4.5.5. Herschel-Bulkley Model for Bingham Plastics ................................................................ 433
7.4.5.5.1. Inputs for the Herschel-Bulkley Model ................................................................. 434
7.5.Thermal Conductivity .................................................................................................................... 434
7.5.1. Constant Thermal Conductivity ............................................................................................. 435
7.5.2.Thermal Conductivity as a Function of Temperature .............................................................. 435
7.5.3.Thermal Conductivity Using Kinetic Theory ........................................................................... 436
7.5.4. Composition-Dependent Thermal Conductivity for Multicomponent Mixtures ...................... 436
7.5.5. Anisotropic Thermal Conductivity for Solids .......................................................................... 437
7.5.5.1. Anisotropic Thermal Conductivity ................................................................................ 438
7.5.5.2. Biaxial Thermal Conductivity ........................................................................................ 439
7.5.5.3. Orthotropic Thermal Conductivity ................................................................................ 440
7.5.5.4. Cylindrical Orthotropic Thermal Conductivity ............................................................... 442
7.5.5.5. User-Defined Anisotropic Thermal Conductivity ........................................................... 443
7.6. User-Defined Scalar (UDS) Diffusivity ............................................................................................. 443
7.6.1. Isotropic Diffusion ................................................................................................................ 443
7.6.2. Anisotropic Diffusion ............................................................................................................ 445
7.6.2.1. Anisotropic Diffusivity .................................................................................................. 445
7.6.2.2. Orthotropic Diffusivity ................................................................................................. 446
7.6.2.3. Cylindrical Orthotropic Diffusivity ................................................................................ 447
7.6.3. User-Defined Anisotropic Diffusivity ..................................................................................... 448
7.7. Specific Heat Capacity ................................................................................................................... 449
7.7.1. Input of Constant Specific Heat Capacity ............................................................................... 450
7.7.2. Specific Heat Capacity as a Function of Temperature ............................................................. 450
xvii
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
User's Guide
7.7.3. Defining Specific Heat Capacity Using Kinetic Theory ............................................................ 450
7.7.4. Specific Heat Capacity as a Function of Composition ............................................................. 450
7.8. Radiation Properties ...................................................................................................................... 451
7.8.1. Absorption Coefficient ......................................................................................................... 451
7.8.1.1. Inputs for a Constant Absorption Coefficient ................................................................ 452
7.8.1.2. Inputs for a Composition-Dependent Absorption Coefficient ........................................ 452
7.8.1.2.1. Path Length Inputs .............................................................................................. 452
7.8.1.2.1.1. Inputs for a Non-Gray Radiation Absorption Coefficient ............................... 453
7.8.1.2.1.2. Effect of Particles and Soot on the Absorption Coefficient ........................... 453
7.8.2. Scattering Coefficient ........................................................................................................... 453
7.8.2.1. Inputs for a Constant Scattering Coefficient .................................................................. 453
7.8.2.2. Inputs for the Scattering Phase Function ...................................................................... 453
7.8.2.2.1. Isotropic Phase Function ..................................................................................... 453
7.8.2.2.2. Linear-Anisotropic Phase Function ...................................................................... 454
7.8.2.2.3. Delta-Eddington Phase Function ......................................................................... 454
7.8.2.2.4. User-Defined Phase Function .............................................................................. 454
7.8.3. Refractive Index ................................................................................................................... 454
7.8.4. Reporting the Radiation Properties ....................................................................................... 454
7.9. Mass Diffusion Coefficients ............................................................................................................ 454
7.9.1. Fickian Diffusion ................................................................................................................... 455
7.9.2. Full Multicomponent Diffusion ............................................................................................. 456
7.9.2.1. General Theory ............................................................................................................ 456
7.9.2.2. Maxwell-Stefan Equations ............................................................................................ 456
7.9.3. Anisotropic Species Diffusion ............................................................................................... 457
7.9.4.Thermal Diffusion Coefficients .............................................................................................. 458
7.9.4.1. Thermal Diffusion Coefficient Inputs ............................................................................ 458
7.9.5. Mass Diffusion Coefficient Inputs .......................................................................................... 460
7.9.5.1. Constant Dilute Approximation Inputs ......................................................................... 460
7.9.5.2. Dilute Approximation Inputs ........................................................................................ 461
7.9.5.3. Multicomponent Method Inputs .................................................................................. 462
7.9.5.4. Unity Lewis Number .................................................................................................... 463
7.9.6. Mass Diffusion Coefficient Inputs for Turbulent Flow ............................................................. 463
7.10. Standard State Enthalpies ........................................................................................................... 464
7.11. Standard State Entropies ............................................................................................................. 464
7.12. Unburnt Thermal Diffusivity ........................................................................................................ 465
7.13. Kinetic Theory Parameters ........................................................................................................... 465
7.13.1. Inputs for Kinetic Theory ..................................................................................................... 465
7.14. Operating Pressure ..................................................................................................................... 466
7.14.1.The Significance of Operating Pressure ............................................................................... 466
7.14.2. Operating Pressure, Gauge Pressure, and Absolute Pressure ................................................. 467
7.14.3. Setting the Operating Pressure ........................................................................................... 467
7.15. Reference Pressure Location ........................................................................................................ 468
7.15.1. Actual Reference Pressure Location ..................................................................................... 468
7.16. Real Gas Models .......................................................................................................................... 468
7.16.1. Introduction ....................................................................................................................... 469
7.16.2. Choosing a Real Gas Model ................................................................................................. 470
7.16.3. Cubic Equation of State Models .......................................................................................... 471
7.16.3.1. Overview and Limitations .......................................................................................... 471
7.16.3.2. Equation of State ....................................................................................................... 473
7.16.3.3. Enthalpy, Entropy, and Specific Heat Calculations ........................................................ 475
7.16.3.4. Critical Constants for Pure Components ..................................................................... 476
7.16.3.5. Calculations for Mixtures ............................................................................................ 477
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xviii
User's Guide
7.16.3.5.1. Using the Cubic Equation of State Real Gas Models ............................................ 479
7.16.3.5.2. Solution Strategies and Considerations for Cubic Equations of State Real Gas
Models ............................................................................................................................. 483
7.16.3.5.3. Using the Cubic Equation of State Models with the Lagrangian Dispersed Phase
Models ............................................................................................................................. 485
7.16.3.5.4. Postprocessing the Cubic Equations of State Real Gas Model .............................. 486
7.16.4.The NIST Real Gas Models ................................................................................................... 487
7.16.4.1. Limitations of the NIST Real Gas Models ..................................................................... 487
7.16.4.2.The REFPROP v7.0 Database ....................................................................................... 488
7.16.4.3. Using the NIST Real Gas Models ................................................................................. 489
7.16.4.3.1. Activating the NIST Real Gas Model ................................................................... 489
7.16.4.4. Solution Strategies and Considerations for NIST Real Gas Model Simulation ................ 491
7.16.4.4.1.Writing Your Case File ........................................................................................ 492
7.16.4.4.2. Postprocessing .................................................................................................. 492
7.16.5.The User-Defined Real Gas Model ....................................................................................... 492
7.16.5.1. Limitations of the User-Defined Real Gas Model .......................................................... 493
7.16.5.2.Writing the UDRGM C Function Library ....................................................................... 495
7.16.5.3. Compiling Your UDRGM C Functions and Building a Shared Library File ....................... 498
7.16.5.3.1. Compiling the UDRGM Using the Graphical Interface ......................................... 499
7.16.5.3.2. Compiling the UDRGM Using the Text Interface ................................................. 499
7.16.5.3.3. Loading the UDRGM Shared Library File ............................................................. 500
7.16.5.4. UDRGM Example: Ideal Gas Equation of State ............................................................. 501
7.16.5.4.1. Ideal Gas UDRGM Code Listing .......................................................................... 502
7.16.5.5. Additional UDRGM Examples ..................................................................................... 504
8. Modeling Basic Fluid Flow ................................................................................................................... 505
8.1. User-Defined Scalar (UDS) Transport Equations .............................................................................. 505
8.1.1. Introduction ......................................................................................................................... 505
8.1.2. UDS Theory .......................................................................................................................... 505
8.1.2.1. Single Phase Flow ........................................................................................................ 506
8.1.2.2. Multiphase Flow .......................................................................................................... 506
8.1.3. Setting Up UDS Equations in ANSYS Fluent ........................................................................... 507
8.1.3.1. Single Phase Flow ........................................................................................................ 508
8.1.3.2. Multiphase Flow .......................................................................................................... 512
8.2. Periodic Flows ............................................................................................................................... 514
8.2.1. Overview and Limitations ..................................................................................................... 514
8.2.1.1. Overview ..................................................................................................................... 514
8.2.1.2. Limitations for Modeling Streamwise-Periodic Flow ...................................................... 515
8.2.2. User Inputs for the Pressure-Based Solver .............................................................................. 515
8.2.2.1. Setting Parameters for the Calculation of β ................................................................... 517
8.2.3. User Inputs for the Density-Based Solvers ............................................................................. 517
8.2.4. Monitoring the Value of the Pressure Gradient ...................................................................... 518
8.2.5. Postprocessing for Streamwise-Periodic Flows ...................................................................... 518
8.3. Swirling and Rotating Flows .......................................................................................................... 519
8.3.1. Overview of Swirling and Rotating Flows .............................................................................. 520
8.3.1.1. Axisymmetric Flows with Swirl or Rotation ................................................................... 520
8.3.1.1.1. Momentum Conservation Equation for Swirl Velocity ........................................... 520
8.3.1.2.Three-Dimensional Swirling Flows ................................................................................ 520
8.3.1.3. Flows Requiring a Moving Reference Frame .................................................................. 520
8.3.2.Turbulence Modeling in Swirling Flows ................................................................................. 521
8.3.3. Mesh Setup for Swirling and Rotating Flows .......................................................................... 521
8.3.3.1. Coordinate System Restrictions .................................................................................... 521
8.3.3.2. Mesh Sensitivity in Swirling and Rotating Flows ............................................................ 521
xix
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
User's Guide
8.3.4. Modeling Axisymmetric Flows with Swirl or Rotation ............................................................ 522
8.3.4.1. Problem Setup for Axisymmetric Swirling Flows ........................................................... 522
8.3.4.2. Solution Strategies for Axisymmetric Swirling Flows ..................................................... 523
8.3.4.2.1. Step-By-Step Solution Procedures for Axisymmetric Swirling Flows ...................... 523
8.3.4.2.2. Improving Solution Stability by Gradually Increasing the Rotational or Swirl
Speed ............................................................................................................................... 524
8.3.4.2.2.1. Postprocessing for Axisymmetric Swirling Flows .......................................... 525
8.4. Compressible Flows ...................................................................................................................... 525
8.4.1.When to Use the Compressible Flow Model ........................................................................... 526
8.4.2. Physics of Compressible Flows .............................................................................................. 527
8.4.2.1. Basic Equations for Compressible Flows ....................................................................... 527
8.4.2.2.The Compressible Form of the Gas Law ........................................................................ 527
8.4.3. Modeling Inputs for Compressible Flows ............................................................................... 528
8.4.3.1. Boundary Conditions for Compressible Flows ............................................................... 529
8.4.4. Floating Operating Pressure ................................................................................................. 529
8.4.4.1. Limitations .................................................................................................................. 529
8.4.4.2.Theory ......................................................................................................................... 529
8.4.4.3. Enabling Floating Operating Pressure ........................................................................... 530
8.4.4.4. Setting the Initial Value for the Floating Operating Pressure .......................................... 530
8.4.4.5. Storage and Reporting of the Floating Operating Pressure ............................................ 530
8.4.4.6. Monitoring Absolute Pressure ...................................................................................... 531
8.4.5. Solution Strategies for Compressible Flows ........................................................................... 531
8.4.6. Reporting of Results for Compressible Flows ......................................................................... 531
8.5. Inviscid Flows ................................................................................................................................ 532
8.5.1. Setting Up an Inviscid Flow Model ........................................................................................ 532
8.5.2. Solution Strategies for Inviscid Flows .................................................................................... 533
8.5.3. Postprocessing for Inviscid Flows .......................................................................................... 533
9. Modeling Flows with Moving Reference Frames ................................................................................ 535
9.1. Introduction ................................................................................................................................. 535
9.2. Flow in Single Moving Reference Frames (SRF) ............................................................................... 537
9.2.1. Mesh Setup for a Single Moving Reference Frame ................................................................. 538
9.2.2. Setting Up a Single Moving Reference Frame Problem .......................................................... 538
9.2.2.1. Choosing the Relative or Absolute Velocity Formulation ............................................... 541
9.2.2.1.1. Example ............................................................................................................. 541
9.2.3. Solution Strategies for a Single Moving Reference Frame ....................................................... 542
9.2.3.1. Gradual Increase of the Rotational Speed to Improve Solution Stability ......................... 543
9.2.4. Postprocessing for a Single Moving Reference Frame ............................................................ 543
9.3. Flow in Multiple Moving Reference Frames .................................................................................... 544
9.3.1.The Multiple Reference Frame Model .................................................................................... 545
9.3.1.1. Overview ..................................................................................................................... 545
9.3.1.2. Limitations .................................................................................................................. 546
9.3.2. The Mixing Plane Model ....................................................................................................... 547
9.3.2.1. Overview ..................................................................................................................... 547
9.3.2.2. Limitations .................................................................................................................. 547
9.3.3. Mesh Setup for a Multiple Moving Reference Frame .............................................................. 548
9.3.4. Setting Up a Multiple Moving Reference Frame Problem ....................................................... 548
9.3.4.1. Setting Up Multiple Reference Frames .......................................................................... 548
9.3.4.2. Setting Up the Mixing Plane Model .............................................................................. 551
9.3.4.2.1. Modeling Options ............................................................................................... 554
9.3.4.2.1.1. Fixing the Pressure Level for an Incompressible Flow ................................... 555
9.3.4.2.1.2. Conserving Swirl Across the Mixing Plane ................................................... 555
9.3.4.2.1.3. Conserving Total Enthalpy Across the Mixing Plane ..................................... 555
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xx
User's Guide
剩余2691页未读,继续阅读
2020-04-27 上传
2019-07-15 上传
2021-08-30 上传
2020-12-10 上传
2021-04-10 上传
2021-06-02 上传
maodan007107
- 粉丝: 0
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现
- 深入理解JavaScript类与面向对象编程
- Argspect-0.0.1版本Python包发布与使用说明
- OpenNetAdmin v09.07.15 PHP项目源码下载
- 掌握Node.js: 构建高性能Web服务器与应用程序
- Matlab矢量绘图工具:polarG函数使用详解
- 实现Vue.js中PDF文件的签名显示功能
- 开源项目PSPSolver:资源约束调度问题求解器库
- 探索vwru系统:大众的虚拟现实招聘平台
- 深入理解cJSON:案例与源文件解析
- 多边形扩展算法在MATLAB中的应用与实现
- 用React类组件创建迷你待办事项列表指南
- Python库setuptools-58.5.3助力高效开发
- fmfiles工具:在MATLAB中查找丢失文件并列出错误
- 老枪二级域名系统PHP源码简易版发布
- 探索DOSGUI开源库:C/C++图形界面开发新篇章
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功