数值方法第二版MATLAB作业:二分法和牛顿迭代法解非线性方程
5星 · 超过95%的资源 需积分: 10 64 浏览量
更新于2024-01-21
2
收藏 762KB DOCX 举报
《数值方法第二版matlab作业》是一本关于数值方法的书籍,其中包含了许多编程作业。本文将总结第二章中关于非线性方程求根解方程的内容。
第二章主要介绍了两种求解非线性方程的方法,分别是二分法和牛顿迭代法。接下来将对这两种方法进行详细介绍。
首先是二分法求解方程。给定方程为156.4=100e^λ-43.5λ(e^λ-1)。为了求解方程,我们首先定义了方程的函数表达式f,并给定了工作区间[0.1, 0.2]。然后使用二分法来逼近方程的解,要求精度达到10^(-10)。
具体的代码为:
```Matlab
a = 0.1;
b = 0.2;
f = @(x) (100*exp(x) - 43.5*(exp(x)-1)/x) - 156.4;
c = (a + b) / 2;
while abs(b - a) > 1e-10
if f(c) * f(b) < 0
a = c;
else
b = c;
end
c = (a + b) / 2;
end
x = c;
fprintf('\n x = %.10f\n', x);
```
以上代码通过将工作区间不断缩小,直到区间长度小于等于10^(-10)时,取区间中点作为近似解x。
接下来是牛顿迭代法求解方程。给定方程为156.4=100e^x*x^2-43.5*x*(e^x-1)-156.4*x^2。为了求解方程,我们使用牛顿迭代法来逼近方程的解,要求精度达到10^(-4)。
迭代公式为:
x = x - (100*exp(x)*x^2 - 43.5*x*(exp(x)-1) - 156.4*x^2) / (100*exp(x)*x^2 - 43.5*(exp(x)*x-exp(x)+1))。
具体的代码为:
```Matlab
Error = 1e-4;
x = 1;
for k = 1:10
xk = x;
x = x - (100*exp(x)*x^2 - 43.5*x*(exp(x)-1) - 156.4*x^2) / (100*exp(x)*x^2 - 43.5*(exp(x)*x-exp(x)+1));
end
```
以上代码通过迭代公式不断更新x的值,直到满足迭代误差小于等于10^(-4)时,取最后一次迭代得到的x作为近似解。
通过以上两种方法,我们可以得到方程的近似解。在本章的作业中,通过二分法求解方程得到的近似解精度达到了10^(-10),而通过牛顿迭代法求解方程得到的近似解精度达到了10^(-4)。这两种方法都是常用的数值方法,可以在实际问题中有效地求解非线性方程。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-11-02 上传
2021-09-10 上传
2022-11-02 上传
2023-03-31 上传
2023-03-31 上传
2021-09-21 上传
jia_xu_
- 粉丝: 8
- 资源: 2
最新资源
- 非常不错phpmailer邮件类系统下载 v5.1
- STM32F0-AM2302:STM32F0探索板上AM2302DHT22温湿度传感器的测试程序
- WLSegmentedControls:具有多项选择和垂直布局支持的UISegmentedControl的自定义实现
- 黑苹果版驱动精灵Hackintosh
- Build-a-Portfolio-Website-Deploy
- 精灵传信系统支持网站+小程序双端源码
- ER English to Bengali Dictionary-开源
- 交通灯PLC程序.rar
- 企业图邮件群发系统官方版v20111123
- KarmaTestAdapter-Demo
- bookstore
- abaqus arc length-开源
- JavaLabs:Java跨平台编程实验室
- 域格模块Windows下驱动
- gcc编译工具的源码包
- makeup:一些关于女孩的化妆品的东西,给男孩的东西如何给你的爱人买