Matlab SPM8静息态数据预处理详解
需积分: 44 83 浏览量
更新于2024-09-10
2
收藏 431KB PDF 举报
该资源是关于使用Matlab SPM8进行静息态脑功能成像数据预处理的教程,主要涵盖了从数据格式转换到空间标准化等多个步骤。
在静息态脑功能成像研究中,预处理是至关重要的,它能够减少噪声,提高数据分析的准确性。以下是对描述中提到的预处理步骤的详细解释:
1. **格式转换**:通常,原始数据以DICOM格式存储,需要转换为NIFTI格式,以便于后续的分析。如果数据已经是NIFTI格式,可以直接使用。
2. **去除前n个时间点**:这是为了消除设备启动初期的不稳定因素,一般会去除前10个时间点,但具体数量可以根据实际情况在8到20之间选择。
3. **时间层校正(SliceTiming)**:针对不同的扫描层次在时间上的差异进行校正。例如,在25层的情况下,SPM中可以设置Sliceorder为1:2:25,DPARSF中则采用与之相同的顺序。参考层一般选中间层,如第25层,因为扫描顺序通常是奇数层先扫描,然后是偶数层。
4. **头动校正(Realign)**:通过比较连续扫描帧之间的位移来纠正头部运动。完成后,可以在RealignParameter文件夹中查看spm….ps文件,用AoboeReader或Excludesubjects.txt文件来评估头动情况。头动阈值因研究对象的不同而变化,如患者通常设为3mm和3度,而健康受试者可能设为1.5mm和1.5度。
5. **空间标准化(Normalize)**:将个体的脑图像映射到统一的标准空间(如MNI空间),以减少个体差异。两种方法包括使用EPI模板或T1像进行标准化。前者中,SourceImage为平均功能像,Imagetowrite为所有头动校正后的文件,TemplateImage通常选用EPI.nii,设置合适的Boundingbox和Voxelsizes。后者涉及结构像与功能像的配准和分割。
6. **平滑(Smooth)**:通过高斯滤波实现空间平滑,降低噪声,提高信号的信噪比。平滑半径通常设置为4-8mm。
7. **去线性漂移(Detrend)**:去除数据中的线性趋势,可能源于生理过程或设备误差。
8. **滤波(Filter)**:应用低通滤波器来去除高频噪声,一般设置截止频率在0.01-0.1Hz之间,以保留大脑默认模式网络(DMN)等低频信号。
这些步骤共同构成了静息态脑功能成像数据预处理的基本流程,通过这一系列操作,可以提高数据分析的可靠性,并为后续的功能连接分析、解剖定位和统计建模等提供高质量的数据基础。
2019-02-28 上传
2021-05-23 上传
2020-03-31 上传
2023-07-14 上传
2024-01-07 上传
2022-12-18 上传
2023-05-06 上传
点击了解资源详情
点击了解资源详情
LaVine01
- 粉丝: 1
- 资源: 7
最新资源
- Android圆角进度条控件的设计与应用
- mui框架实现带侧边栏的响应式布局
- Android仿知乎横线直线进度条实现教程
- SSM选课系统实现:Spring+SpringMVC+MyBatis源码剖析
- 使用JavaScript开发的流星待办事项应用
- Google Code Jam 2015竞赛回顾与Java编程实践
- Angular 2与NW.js集成:通过Webpack和Gulp构建环境详解
- OneDayTripPlanner:数字化城市旅游活动规划助手
- TinySTM 轻量级原子操作库的详细介绍与安装指南
- 模拟PHP序列化:JavaScript实现序列化与反序列化技术
- ***进销存系统全面功能介绍与开发指南
- 掌握Clojure命名空间的正确重新加载技巧
- 免费获取VMD模态分解Matlab源代码与案例数据
- BuglyEasyToUnity最新更新优化:简化Unity开发者接入流程
- Android学生俱乐部项目任务2解析与实践
- 掌握Elixir语言构建高效分布式网络爬虫