Python PySpark入门与RDD深度解析

4星 · 超过85%的资源 需积分: 9 15 下载量 52 浏览量 更新于2024-07-18 收藏 13.24MB PDF 举报
"《Python Spark学习指南》深入探索Apache Spark与Python集成的世界" 在这个全面的教程中,我们将首先理解Spark的基本概念,它是一个开源的大数据处理框架,以在内存中高效执行计算而闻名。Apache Spark由LinkedIn开发,后来成为Apache软件基金会的一部分,支持实时流处理和批处理任务。本书的标题"pyspark_study"着重于Python编程语言在Spark中的应用。 章节1,"Understanding Spark",会介绍Spark的核心组件,如Spark Jobs和APIs,以及其执行流程。Resilient Distributed Datasets (RDD)是Spark的基础,它们是分布式、容错的数据结构,可以在集群上进行并行操作。这里还会讲解DataFrame和Dataset的概念,后者是Spark 2.0引入的新抽象,旨在简化数据处理。Catalyst Optimizer用于优化DataFrame的执行计划,而Project Tungsten则提升了性能,尤其是在内存管理方面。此外,Spark 2.0架构的统一了Datasets和DataFrames,引入了SparkSession作为易用的接口。 Structured Streaming部分介绍了Spark的实时流处理能力,如何构建连续应用,并讨论了这些在处理持续数据流时的优势。例如,Lambda expressions(lambda表达式)在这里发挥了重要作用,允许用户定义简洁的操作逻辑。作者还会讲解各种转换方法,如.map()、.filter()、.flatMap()等,以及如何利用.distinct()、.sample()进行数据清洗和采样,以及.leftOuterJoin()用于进行关联查询。 本书不仅涵盖了技术细节,还包含了对Spark工作原理的深入剖析,适合希望通过Python进行大数据分析和处理的初学者和专业人士。阅读过程中,读者可以参考网站<https://www.iteblog.com>获取更多学习资源和支持。为了确保最佳学习体验,书中提供了实践代码下载链接,以及彩色图像供读者参考。同时,作者和评审者的贡献以及读者反馈都在相应章节有所提及,旨在共同提升内容质量。务必注意,如果发现任何错误或侵权行为,请通过指定渠道报告,以便及时修正。如果你在学习过程中有任何疑问,作者鼓励读者提问,共同探讨Spark与Python结合的无限可能。
2017-05-12 上传
About This Book, Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0Develop and deploy efficient, scalable real-time Spark solutionsTake your understanding of using Spark with Python to the next level with this jump start guide, Who This Book Is For, If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory., What You Will Learn, Learn about Apache Spark and the Spark 2.0 architectureBuild and interact with Spark DataFrames using Spark SQLLearn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectivelyRead, transform, and understand data and use it to train machine learning modelsBuild machine learning models with MLlib and MLLearn how to submit your applications programmatically using spark-submitDeploy locally built applications to a cluster, In Detail, Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark., You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command., By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications., Style and approach, This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.