SAS系统讲义:非参数Kruskal-Wallis秩和检验详解
版权申诉
120 浏览量
更新于2024-09-09
收藏 177KB DOC 举报
SAS系统讲义中的完全随机设计Kruskal-Wallis秩和检验是一种非参数统计方法,用于评估多个独立样本间是否存在显著差异,当数据无法满足正态分布和方差齐性的假设时。该检验适用于比较三个或更多总体的中位数,因为它基于秩统计量,不受具体分布形式的影响。
Kruskal-Wallis检验的基本步骤包括:
1. **样本选择**:假设样本是从多个独立且对立的总体中抽取的。
2. **秩次计算**:合并所有样本,按数值大小排序,每个观测值赋予相应的秩次,最小值秩次为1,如果有相同值,则平均分配秩次。
3. **统计量构建**:计算组间平方和(H),它是各组秩和之和的平方和除以组内观察数与组数乘积的总和,反映了组间秩差的总体效应。
- 组间平方和(H)= (Σn_i*(Ri^2 - ni*(Rtotal)^2)) / (N - p)
- 其中n_i为第i组样本数,Ri为第i组的秩和,Rtotal为所有样本的秩和,N为总观察数,p为组数。
4. **秩方差估计**:全体样本的秩方差计算涉及自由度调整,样本方差自由度为N-p-1,然后根据公式进行计算。
5. **校正处理**:若样本存在重复值(结值),需校正KW统计量,使用校正系数C,计算调整后的KWc值。
- 校正系数C = Σ(d_j^2),d_j为第j个结值的个数。
- 调整后的KWc = H * C / (N - 1)
原假设是各组之间没有显著差异,即它们的中位数或集中趋势相似。通过比较组间平方和与全体样本秩方差的比值,Kruskal-Wallis统计量KW的大小可以用来决定拒绝还是接受原假设。如果KW值较大,且经适当显著性水平的检验,我们有理由拒绝原假设,认为各组之间存在显著差异。
SAS系统讲义中的Kruskal-Wallis秩和检验是一种强大的工具,特别是在处理非正态分布或方差不齐的数据时,能提供关于多个样本之间中位数差异的稳健结论。
1277 浏览量
124 浏览量
2708 浏览量
471 浏览量
297 浏览量
336 浏览量
554 浏览量
209 浏览量
353 浏览量
![](https://profile-avatar.csdnimg.cn/1bb767fabf5a4071ba4a6158fff1f94b_wenyusuran.jpg!1)
普通网友
- 粉丝: 13w+
最新资源
- Servlet核心技术与实践:从基础到高级
- Servlet核心技术详解:从基础到过滤器与监听器
- 操作系统实验:进程调度与优先数算法
- 《Div+CSS布局大全》教程整理
- 创建客户反馈表单的步骤
- Java容器深度解析:Array、List、Set与Map
- JAVA字符集与编码转换详解
- 华为硬件工程师的手册概览
- ASP.NET 2.0 实现动态广告管理与随机显示
- 使用Dreamweaver创建网页过渡动画效果
- 创建ASP登录系统:步骤详解
- ASP论坛搭建:资料转义与版主权限管理
- C#新手必读:新版设计模式详解与实例
- 提升网站论坛制作:技术优化与点击计数
- AVR微处理器ATmega32L/32:高级特性和功能详解
- C++实现经典矩阵:螺旋及蛇形排列