SAS系统讲义:非参数Kruskal-Wallis秩和检验详解
版权申诉
123 浏览量
更新于2024-09-09
收藏 177KB DOC 举报
SAS系统讲义中的完全随机设计Kruskal-Wallis秩和检验是一种非参数统计方法,用于评估多个独立样本间是否存在显著差异,当数据无法满足正态分布和方差齐性的假设时。该检验适用于比较三个或更多总体的中位数,因为它基于秩统计量,不受具体分布形式的影响。
Kruskal-Wallis检验的基本步骤包括:
1. **样本选择**:假设样本是从多个独立且对立的总体中抽取的。
2. **秩次计算**:合并所有样本,按数值大小排序,每个观测值赋予相应的秩次,最小值秩次为1,如果有相同值,则平均分配秩次。
3. **统计量构建**:计算组间平方和(H),它是各组秩和之和的平方和除以组内观察数与组数乘积的总和,反映了组间秩差的总体效应。
- 组间平方和(H)= (Σn_i*(Ri^2 - ni*(Rtotal)^2)) / (N - p)
- 其中n_i为第i组样本数,Ri为第i组的秩和,Rtotal为所有样本的秩和,N为总观察数,p为组数。
4. **秩方差估计**:全体样本的秩方差计算涉及自由度调整,样本方差自由度为N-p-1,然后根据公式进行计算。
5. **校正处理**:若样本存在重复值(结值),需校正KW统计量,使用校正系数C,计算调整后的KWc值。
- 校正系数C = Σ(d_j^2),d_j为第j个结值的个数。
- 调整后的KWc = H * C / (N - 1)
原假设是各组之间没有显著差异,即它们的中位数或集中趋势相似。通过比较组间平方和与全体样本秩方差的比值,Kruskal-Wallis统计量KW的大小可以用来决定拒绝还是接受原假设。如果KW值较大,且经适当显著性水平的检验,我们有理由拒绝原假设,认为各组之间存在显著差异。
SAS系统讲义中的Kruskal-Wallis秩和检验是一种强大的工具,特别是在处理非正态分布或方差不齐的数据时,能提供关于多个样本之间中位数差异的稳健结论。
1297 浏览量
142 浏览量
2726 浏览量
483 浏览量
305 浏览量
342 浏览量
568 浏览量
217 浏览量
366 浏览量

普通网友
- 粉丝: 13w+
最新资源
- 掌握MATLAB中不同SVM工具箱的多类分类与函数拟合应用
- 易窗颜色抓取软件:简单绿色工具
- VS2010中使用QT连接MySQL数据库测试程序源码解析
- PQEngine:PHP图形用户界面(GUI)库的深入探索
- MeteorFriends: 管理朋友请求与好友列表的JavaScript程序包
- 第三届微步情报大会:深入解析网络安全的最新趋势
- IQ测试软件V1.3.0.0正式版发布:功能优化与错误修复
- 全面技术项目源码合集:企业级HTML5网页与实践指南
- VC++6.0绿色完整版兼容多系统安装指南
- 支付宝即时到账收款与退款接口详解
- 新型不连续导电模式V_2C控制Boost变换器分析
- 深入解析快速排序算法的C++实现
- 利用MyBatis实现Oracle映射文件自动生成
- vim-autosurround插件:智能化管理代码中的括号与引号
- Bitmap转byte[]实例教程与应用
- Qt YUV在CentOS 7下的亲测Demo教程