Packt代码库:Python机器学习实战指南

需积分: 12 2 下载量 180 浏览量 更新于2024-12-24 收藏 1.42MB ZIP 举报
资源摘要信息:"Python-Machine-Learning:Packt发布的Python机器学习代码存储库" Python机器学习是数据科学领域中的一个重要分支,它涉及到算法和技术的使用,能够使计算机在没有明确指令的情况下进行学习和预测。Packt Publishing发布的Python机器学习代码存储库是一个提供了实际操作代码的资源库,它能够帮助学习者通过实例来深入理解机器学习的原理和应用。 首先,要充分利用该代码存储库,用户需要确保他们的计算机上安装了Python 3.4.3或更高版本的Python环境。这个要求是出于兼容性和库支持的考虑,因为一些较新的库可能会需要较高的Python版本来运行。Python 3是目前广泛使用的版本,与Python 2相比,它在语法和功能上都有显著改进。 其次,代码存储库中广泛使用了Python的基本科学计算库。其中,SciPy是一个开源的Python算法库和数学工具包,它提供了许多用于数学、科学和工程计算的库函数。NumPy是Python中用于科学计算的核心库,它支持强大的N维数组对象以及一系列用于操作这些数组的复杂函数。scikit-learn是一个开源的机器学习库,它基于NumPy、SciPy等库,提供了简单而高效的工具进行数据挖掘和数据分析。matplotlib是一个用于创建静态、交互式和动画可视化的Python库。pandas是构建于NumPy之上,提供了高性能、易于使用的数据结构和数据分析工具。 在安装了Python和这些科学计算库之后,用户可以通过Jupyter Notebook来运行代码。Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含实时代码、方程、可视化和文本的文档。它非常适合于数据清洗和转换、数值模拟、统计建模、数据可视化、机器学习等领域的应用。Jupyter Notebook支持多种编程语言,但特别适合Python,因此它是数据科学和机器学习项目的理想选择。 除了上述提到的库之外,代码存储库可能还包括其他用于数据处理、模型训练和评估的工具。这些工具可能是为了实现特定的算法或者简化机器学习的工作流程。学习者在使用这个代码存储库时,应关注代码的实际应用和逻辑,同时也需要理解代码背后所代表的机器学习概念。 在进行机器学习项目时,了解如何设置训练集和测试集、选择合适的数据预处理方法、使用正确的特征选择技术、应用不同的算法模型以及如何评估模型的性能都是至关重要的。此外,模型调优和交叉验证也是提高模型性能的重要步骤。 总之,Packt Publishing发布的Python机器学习代码存储库是一个宝贵的资源,它为学习者提供了一个实战平台,可以让他们通过实际编写和运行代码来加深对Python机器学习的理解。学习者应该利用这个资源来实践书本知识,通过不断地尝试和错误来提升自己的机器学习技能。
2017-06-11 上传
Python Machine Learning By Example by Yuxi (Hayden) Liu English | 31 May 2017 | ASIN: B01MT7ATL5 | 254 Pages | AZW3 | 3.86 MB Key Features Learn the fundamentals of machine learning and build your own intelligent applications Master the art of building your own machine learning systems with this example-based practical guide Work with important classification and regression algorithms and other machine learning techniques Book Description Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. What you will learn Exploit the power of Python to handle data extraction, manipulation, and exploration techniques Use Python to visualize data spread across multiple dimensions and extract useful features Dive deep into the world of analytics to predict situations correctly Implement machine learning classification and regression algorithms from scratch in Python Be amazed to see the algorithms in action Evaluate the performance of a machine learning model and optimize it Solve interesting real-world problems using machine learning and Python as the journey unfolds About the Author Yuxi (Hayden) Liu is currently a data scientist working on messaging app optimization at a multinational online media corporation in Toronto, Canada. He is focusing on social graph mining, social personalization, user demographics and interests prediction, spam detection, and recommendation systems. He has worked for a few years as a data scientist at several programmatic advertising companies, where he applied his machine learning expertise in ad optimization, click-through rate and conversion rate prediction, and click fraud detection. Yuxi earned his degree from the University of Toronto, and published five IEEE transactions and conference papers during his master's research. He finds it enjoyable to crawl data from websites and derive valuable insights. He is also an investment enthusiast. Table of Contents Getting Started with Python and Machine Learning Exploring the 20 newsgroups data set Spam email detection with Naive Bayes News topic classification with Support Vector Machine Click-through prediction with tree-based algorithms Click-through rate prediction with logistic regression Stock prices prediction with regression algorithms Best practices