磷虾群算法优化的SVR-ARMA模型:ORP预测精度提升
103 浏览量
更新于2024-08-31
收藏 427KB PDF 举报
本文主要探讨了一种创新的预测模型——基于磷虾群算法优化的SVR-ARMA组合模型在氧化还原电位(ORP)预测中的应用。ORP在生物氧化提金过程中扮演着关键角色,准确预测ORP有助于优化工艺参数,提升黄金产量。磷虾群算法被引入到支持向量回归(SVR)模型中,以优化模型参数,增强其非线性寻优性能。SVR以其良好的泛化能力和适应复杂数据的能力,构建了回归预测模型。
在SVR预测的基础上,文章提出利用自回归移动平均模型(ARMA)来处理SVR模型产生的线性残差。ARMA模型考虑了时间序列的过去状态和外部干扰的影响,通过有限样本数据拟合,形成残差预测模型。这种组合方式旨在提高预测精度,减少误差。
相较于基础SVR模型、改进的Khodadad-Hamidi-SVR模型以及传统的SVR-ARMA模型,这种优化的模型在实际仿真中展现出更高的预测精度,特别是在处理ORP这类具有复杂性和非线性的工艺参数时,能够提供更为精准的预测结果。这对于生物氧化预处理过程的控制和优化具有显著的实际价值,有助于维持工艺稳定并提高整体效率。
总结来说,本文的核心技术是将磷虾群算法与支持向量回归和自回归移动平均模型相结合,以形成一个既能捕捉非线性关系又能处理残差误差的高效预测框架,对于提高ORP预测的准确性具有重要意义。这种创新方法为黄金提取行业的工艺优化提供了强有力的支持工具。
2021-03-06 上传
点击了解资源详情
2023-04-15 上传
2021-09-25 上传
2021-09-04 上传
2021-11-05 上传
2021-02-24 上传
2022-06-04 上传
2017-11-30 上传
weixin_38733525
- 粉丝: 2
- 资源: 920
最新资源
- Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南
- Apache RocketMQ Go客户端:全面支持与消息处理功能
- WStage平台:无线传感器网络阶段数据交互技术
- 基于Java SpringBoot和微信小程序的ssm智能仓储系统开发
- CorrectMe项目:自动更正与建议API的开发与应用
- IdeaBiz请求处理程序JAVA:自动化API调用与令牌管理
- 墨西哥面包店研讨会:介绍关键业绩指标(KPI)与评估标准
- 2014年Android音乐播放器源码学习分享
- CleverRecyclerView扩展库:滑动效果与特性增强
- 利用Python和SURF特征识别斑点猫图像
- Wurpr开源PHP MySQL包装器:安全易用且高效
- Scratch少儿编程:Kanon妹系闹钟音效素材包
- 食品分享社交应用的开发教程与功能介绍
- Cookies by lfj.io: 浏览数据智能管理与同步工具
- 掌握SSH框架与SpringMVC Hibernate集成教程
- C语言实现FFT算法及互相关性能优化指南