Python数据分析入门:numpy库基础与创建数组详解
123 浏览量
更新于2024-08-29
收藏 79KB PDF 举报
numpy是Python编程语言中的一个重要工具包,专用于数值计算和科学计算,因其高效的数据处理能力而广受欢迎。作为“数字化的Python”,它为其他科学计算库提供了基础支持。numpy的核心数据结构是ndarray(n-dimensional array),这是一个多维数组,其设计旨在支持矢量化操作,这意味着可以直接对整个数组执行计算,避免了传统的循环,从而显著提高了性能并节省内存。
ndarray的特点包括:
1. **维度(dimensions)**:ndarray能够处理任意维度的数据,每个维度可以有不同的大小。
2. **数据类型(data types)**:数组元素具有统一的数据类型,可以通过dtype参数在创建时指定,或者根据输入对象自动推断。
3. **内存效率**:numpy数组是连续存储在内存中的,这对于处理大量数据和执行矩阵运算非常关键。
numpy提供了多种创建数组的方法:
- **从Python内置结构**:如列表和元组转换而来,通过`numpy.array()`函数进行转换,例如:
- `np.array([1,2,3,4], dtype='int8')`将创建一个整型数组,如果省略dtype则会自动选择最小类型。
- 对于元组,直接传递即可,如`np.array((1,2,3,4))`。
- **numpy原生函数**:如`np.arange()`, `np.ones()`, `np.zeros()`等,可以快速生成特定范围的数组或全零/全一数组,比如`np.arange(1, 10, 2)`会生成从1到9,步长为2的整数数组。
- **从非有序集合或字典转换**:集合和字典由于其无序性,转换成数组后可能会丢失原有的顺序,例如,`np.array({1,2,3,4,3})`会得到一个包含元素的有序数组,而字典转数组后键值对的顺序不可靠。
除了这些基本操作,numpy还支持许多高级功能,如线性代数(矩阵乘法、求逆、特征值等)、随机数生成、傅里叶变换等,这些都是科学计算和数据分析中不可或缺的功能。由于numpy底层使用C/C++编写,其API提供了高性能的接口,使得开发者可以在Python中高效地进行数值计算。
numpy是Python数据分析的基石,通过ndarray及其丰富的创建和操作方法,为数据科学家提供了强大且高效的工具,无论是处理数值数据、执行复杂的数学运算还是准备数据输入机器学习模型,numpy都是不可或缺的一部分。掌握numpy对于深入理解Python数据分析至关重要。
936 浏览量
836 浏览量
205 浏览量
200 浏览量
点击了解资源详情
点击了解资源详情
1348 浏览量
点击了解资源详情
点击了解资源详情

Cisco789
- 粉丝: 10
最新资源
- 获取最稳定SteamVR和VRTK配套版本1.2.3+3.3.0
- 掌握SPSS数据分析:SPSS17教程详解
- fp-ts库扩展:掌握RemoteData类型及其应用
- 湘潭大学Linux系统期末考试资料汇编
- 爱普生L801打印机清零操作指南及工具下载
- LWIP 1.4.1源码包下载:未移植代码学习版
- dm_bot:已停用的Reddit镜像分享bot
- IMDB评论情感分析:深度挖掘电影评论情绪
- MySQL 5/8版本授权语法错误解决指南
- 掌握CkEditor:简易页面设置与插件应用实例
- h2o:增强node.js koa应用的开发效率
- Ti官方提供的BLE Android SensorTag完整示例代码解析
- C++至C#代码转换工具:实现跨语言编程
- 提升SEO排名的外链自动化工具介绍
- 精确度量偏差变化率的计算方法
- 前端部署新工具:mfx-ui-config配置指南