无尺度网络的拓扑相变:Zagreb指数研究

0 下载量 141 浏览量 更新于2024-09-06 收藏 151KB PDF 举报
"Phase Changes in the Topological Indices of Scale-free Trees" 这篇论文主要探讨的是无尺度网络中的拓扑指数相变现象,特别关注了Zagreb指数在不同参数β下的行为。无尺度网络是一种复杂网络结构,其特性介于有序和无序之间,常用于模拟现实世界中的许多复杂系统,如互联网、社交网络等。 冯群强和胡治水两位作者来自中国科学技术大学统计与金融系,他们研究的核心是具有参数β的无尺度树。无尺度树是一种特殊的网络结构,其特征在于节点的度分布遵循幂律,即大部分节点具有较低的连接度,而少数节点(称为“中心节点”)则拥有极高的连接度。当β接近-1时,无尺度树的结构趋于星型网络,星型网络中所有节点都与一个中心节点相连;而当β非常大时,无尺度树则趋近于随机递归树,这是一种随机生成的网络模型,每个新加入的节点会随机连接到已有节点。 论文中,作者们通过分析Zagreb指数来揭示无尺度树随β变化的相变过程。Zagreb指数是衡量网络中相邻节点度乘积总和的一个拓扑指标,它能反映网络的整体连通性和复杂性。作者们对β从-1到正无穷的变化进行了深入研究,得到了无尺度树Zagreb指数的第一阶矩(平均值)和第二阶矩(方差),这有助于理解指数的统计特性。此外,他们还探讨了该指数的极限行为,即随着网络规模的增加,Zagreb指数如何趋近于某种稳定状态。 关键词包括极限理论、随机网络、小世界网络、Zagreb指数和无尺度树,这表明论文不仅涉及网络的数学分析,还涵盖了网络科学中的核心概念。极限理论在这里指的可能是网络在大尺度下的行为,随机网络和小世界网络则是复杂网络研究的两个重要模型。小世界网络具有短路径长度和高聚集度,它描述了现实中许多网络的混合属性。Zagreb指数的引入则为理解和比较这些网络的结构提供了一种量化工具。 这篇论文对于理解无尺度网络的动态演变以及拓扑结构的相变提供了深入见解,特别是Zagreb指数作为刻画这种变化的关键指标,它的变化规律对于网络模型的构建和应用具有重要意义。这样的研究对于网络科学、信息科学、统计物理等领域有着广泛的应用价值,有助于我们更好地理解和预测复杂网络的行为。

帮我地道的翻译:The differential variational inequalities ((DVIs), for short) are useful for the study of models involving both dynamics and constraints in the form of in￾equalities. They arise in many applications: electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, economical dynamics, dynamic traffic networks. Pang and Stewart [26], [27] established the existence, unique￾ness, and Lipschitz dependence of solutions subject to boundary conditions for (DVIs) in finite dimensional spaces. Han and Pang investigated a class of dif￾ferential quasi-variational inequalities in [11], and Li, Huang and O’Regan [18] studied a class of differential mixed variational inequalities in finite dimensional Well-Posedness of Differential Mixed Quasi-Variational-Inequalities 137 spaces. Gwinner [8] obtained an equivalence result between (DVIs) and projected dynamical systems. In [9] he also proved a stability property for (DVIs) by using the monotonicity method of Browder and Minty, and Mosco set convergence. Chen and Wang [4] studied dynamic Nash equilibrium problems which have the formulation of differential mixed quasi-variational inequalities. Elastoplastic contact problems can also be incorporated into (DMQVIs) formulation because general dynamic processes in the nonsmooth unilateral contact problems are governed by quasi-variational inequalities. A numerical study for nonsmooth contact problems with Tresca friction can be found in [10], Liu, Loi and Obukhovskii [19] studied the existence and global bifurcation for periodic solutions of a class of (DVIs) by using the topological degree theory for multivalued maps and the method of guiding functions. For more details about (DVIs) we refer to [3], [30], [12], [22]–[21].

2023-05-30 上传
2023-06-07 上传