第 11 卷第 1 期
智 能 系 统 学 报
Vol.11 №.1
2016 年 2 月
CAAI Transactions on Intelligent Systems
Feb. 2016
DOI:10.11992/ tis.201510002
网络出版地址:http: / / www.cnki.net/ kcms/ detail/ 23.1538.TP.20160105.1532.006.html
蚁群优化算法的理论研究进展
夏小云
1,2
,周育人
3
(1.江西理工大学 信息工程学院,江西 赣州 341000;2.华南理工大学 计算机与工程学院,广东 广州 510006;
3.中山大学 数据科学与计算机学院,广东 广州 510006)
摘 要:蚁群优化算法的理论研究有助于更好地理解算法的原理以及指导算法应用。 回顾了蚁群优化算法的收敛
性分析、时间复杂度分析与近似性能分析等理论研究进展,分析了其理论研究的对象从简单的拟布尔函数转为组合
优化问题以及实际应用问题。 从蚁群算法理论分析方法和研究问题类型 2 个方面对蚁群算法的理论研究进行综
述。 介绍了适应值划分、漂移分析等最基本的数学分析工具,对时间复杂性及近似性能等重要问题进行了探讨。 总
结比较了蚁群算法求解各类问题的性能,指出这些研究能够更加深入了解蚁群算法的运行机制。 最后,探讨了目前
蚁群算法理论研究中亟待解决的问题,指出引入新的分析工具以及研究更为复杂的算法模型等是值得进一步研究
的方向和内容。
关键词:蚁群优化算法;理论研究;组合优化;收敛性;时间复杂度;近似性能
中图分类号:TP18; TP301.6 文献标志码:A 文章编号:1673⁃4785(2016)01⁃0027⁃10
中文引用格式:夏小云,周育人.蚁群优化算法的理论研究进展[J]. 智能系统学报, 2016, 11(1) : 27⁃36.
英文引用格式:XIA Xiaoyun,ZHOU Yuren. Advances in theoretical research of ant colony optimization[J]. CAAI Transactions on
Intelligent Systems, 2016, 11(1) : 27⁃36.
Advances in theoretical research of ant colony optimization
XIA Xiaoyun
1, 2
,ZHOU Yuren
3
(1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2. School of Computer
Science and Engineering, South China University of Technology, Guangzhou 510006, China; 3. School of Data and Computer Science,
Sun Yat⁃Sen University, Guangzhou 510006, China)
Abstract:Theoretical investigations of the ant colony optimization (ACO) algorithm can help to improve our under⁃
standing of the theoretical basis of the algorithm and guide its appropriate application. Theoretical research on ACO
has included analyses of early convergence, time complexity, and approximation performance. Investigation objec⁃
tives have ranged from simple Boolean functions, to combinatorial optimization and practical application problems,
to the analysis of NP⁃hardness problems. In this paper, we survey state⁃of⁃the⁃art theoretical ACO research from two
aspects: the most common mathematical techniques and those less common. In addition, we introduce two mathe⁃
matical analysis tools, including fitness value partitioning and drift analysis, and discuss important ACO issues, in⁃
cluding ACO runtime analysis and approximation performance. More specifically, we provide comparative results for
ACO’ s performance in solving various problems. These studies provide a direction for better understanding the
working principles of ACO. Finally, we highlight further research directions, including the introduction of new ana⁃
lytical tools and the study of more complicated algorithmic models.
Keywords:ant colony optimization; theoretical research; combinatorial optimization; convergence; time complexi⁃
ty; approximation performance
收稿日期:2015⁃10⁃07. 网络出版日期:2016⁃01⁃05.
基金项目:国家自然科学基金资助项目(61170081, 61472143);江西省
自然科学基金资助项目(20151BAB217008).
通信作者:周育人.E⁃mail:yrzhou@ scut.edu.cn.
随机启发式搜索( randomized search heuristics,
RSHs)算法是近年来发展较快的研究领域,在许多
应用中取得了丰富的成果。 这类启发式算法主要包
括随机局部搜索(randomized local search, RLS)、禁
忌搜 索 ( tabu search)、 模 拟退 火 ( simulated annea⁃
ling, SA) 、演化算法( evolutionary algorithms, EAs)
以及粒 子 群 优 化 算 法 ( particle swarm optimization,