Python爬虫实现新闻分类:从网页抓取到朴素贝叶斯分类
需积分: 47 73 浏览量
更新于2024-08-07
收藏 4.05MB PDF 举报
该资源是一份关于数据仓库与数据挖掘实验报告,主要涉及文本分类的任务。实验者使用Python编程语言,通过爬虫技术抓取了新浪网站上的10类新闻内容,进行了预处理、分词、特征选择等一系列操作,最终使用了朴素贝叶斯和SVM等分类算法对数据进行训练和性能评估。
实验详细步骤如下:
1. **网页爬取**:实验者使用`urllib`库抓取网页内容,并借助`BeautifulSoup`解析HTML源码,提取出新闻资讯的正文内容。
2. **数据采集**:在2016年11月8日至11月11日期间,实验者掌握了Python基础语法,并学会了使用爬虫技术抓取了10个类别总计约2万篇新闻文章,保存在本地。
3. **文本预处理**:从11月12日到11月13日,实验者对抓取的文本进行了分词处理,选择了`jieba`分词库,并过滤掉停用词和无关词,仅保留名词作为有效词汇。
4. **统计分析**:11月14日,实验者统计了每个词汇在文章中出现的频率,以及各类别中的词汇频率和出现文章数量,为后续的特征选择做准备。
5. **特征选择**:11月15日,实验者运用卡方检验(Chi-squared test)选择每类新闻的关键词,选取了出现频率高且具有区分性的词语。
6. **库的学习与应用**:11月16日至11月20日,实验者熟悉了`numpy`、`scipy`和`sklearn`等科学计算库,使用`sklearn.feature_extraction`计算TF-IDF值并进行特征向量的构建和降维。
7. **分类算法**:11月19日至21日,实验者编写了朴素贝叶斯算法的实现,并学习了`sklearn`库中的分类器调用方式。
8. **模型训练与评估**:11月21日后,实验者使用训练集对算法进行训练,并在测试集上评估分类效果,通过准确率、召回率等指标比较不同分类器的性能,并可能使用ROC曲线进行可视化对比。
这个实验是数据挖掘和机器学习实践的经典案例,涉及到网页爬取、文本处理、特征工程和分类模型的构建等多个关键环节,对于理解和掌握文本分类技术有着重要的参考价值。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-09-23 上传
2018-08-31 上传
2021-03-25 上传
2021-03-24 上传
2021-03-25 上传
2021-05-19 上传
勃斯李
- 粉丝: 50
- 资源: 3884
最新资源
- 全国江河水系图层shp文件包下载
- 点云二值化测试数据集的详细解读
- JDiskCat:跨平台开源磁盘目录工具
- 加密FS模块:实现动态文件加密的Node.js包
- 宠物小精灵记忆配对游戏:强化你的命名记忆
- React入门教程:创建React应用与脚本使用指南
- Linux和Unix文件标记解决方案:贝岭的matlab代码
- Unity射击游戏UI套件:支持C#与多种屏幕布局
- MapboxGL Draw自定义模式:高效切割多边形方法
- C语言课程设计:计算机程序编辑语言的应用与优势
- 吴恩达课程手写实现Python优化器和网络模型
- PFT_2019项目:ft_printf测试器的新版测试规范
- MySQL数据库备份Shell脚本使用指南
- Ohbug扩展实现屏幕录像功能
- Ember CLI 插件:ember-cli-i18n-lazy-lookup 实现高效国际化
- Wireshark网络调试工具:中文支持的网口发包与分析