Python爬虫实现新闻分类:从网页抓取到朴素贝叶斯分类
需积分: 47 137 浏览量
更新于2024-08-07
收藏 4.05MB PDF 举报
该资源是一份关于数据仓库与数据挖掘实验报告,主要涉及文本分类的任务。实验者使用Python编程语言,通过爬虫技术抓取了新浪网站上的10类新闻内容,进行了预处理、分词、特征选择等一系列操作,最终使用了朴素贝叶斯和SVM等分类算法对数据进行训练和性能评估。
实验详细步骤如下:
1. **网页爬取**:实验者使用`urllib`库抓取网页内容,并借助`BeautifulSoup`解析HTML源码,提取出新闻资讯的正文内容。
2. **数据采集**:在2016年11月8日至11月11日期间,实验者掌握了Python基础语法,并学会了使用爬虫技术抓取了10个类别总计约2万篇新闻文章,保存在本地。
3. **文本预处理**:从11月12日到11月13日,实验者对抓取的文本进行了分词处理,选择了`jieba`分词库,并过滤掉停用词和无关词,仅保留名词作为有效词汇。
4. **统计分析**:11月14日,实验者统计了每个词汇在文章中出现的频率,以及各类别中的词汇频率和出现文章数量,为后续的特征选择做准备。
5. **特征选择**:11月15日,实验者运用卡方检验(Chi-squared test)选择每类新闻的关键词,选取了出现频率高且具有区分性的词语。
6. **库的学习与应用**:11月16日至11月20日,实验者熟悉了`numpy`、`scipy`和`sklearn`等科学计算库,使用`sklearn.feature_extraction`计算TF-IDF值并进行特征向量的构建和降维。
7. **分类算法**:11月19日至21日,实验者编写了朴素贝叶斯算法的实现,并学习了`sklearn`库中的分类器调用方式。
8. **模型训练与评估**:11月21日后,实验者使用训练集对算法进行训练,并在测试集上评估分类效果,通过准确率、召回率等指标比较不同分类器的性能,并可能使用ROC曲线进行可视化对比。
这个实验是数据挖掘和机器学习实践的经典案例,涉及到网页爬取、文本处理、特征工程和分类模型的构建等多个关键环节,对于理解和掌握文本分类技术有着重要的参考价值。
2022-09-23 上传
2018-08-31 上传
163 浏览量
2021-03-25 上传
2021-03-24 上传
2021-03-25 上传
2021-05-19 上传
2021-07-01 上传
2022-09-23 上传
勃斯李
- 粉丝: 50
- 资源: 3901
最新资源
- 构建基于Django和Stripe的SaaS应用教程
- Symfony2框架打造的RESTful问答系统icare-server
- 蓝桥杯Python试题解析与答案题库
- Go语言实现NWA到WAV文件格式转换工具
- 基于Django的医患管理系统应用
- Jenkins工作流插件开发指南:支持Workflow Python模块
- Java红酒网站项目源码解析与系统开源介绍
- Underworld Exporter资产定义文件详解
- Java版Crash Bandicoot资源库:逆向工程与源码分享
- Spring Boot Starter 自动IP计数功能实现指南
- 我的世界牛顿物理学模组深入解析
- STM32单片机工程创建详解与模板应用
- GDG堪萨斯城代码实验室:离子与火力基地示例应用
- Android Capstone项目:实现Potlatch服务器与OAuth2.0认证
- Cbit类:简化计算封装与异步任务处理
- Java8兼容的FullContact API Java客户端库介绍