ANSYS教程:实操案例-圆面与实体建模

需积分: 34 21 下载量 14 浏览量 更新于2024-08-06 收藏 39.11MB PDF 举报
本资源是一份详细的ANSYS教程,涵盖了高级概率论与ANSYS软件在工程领域的应用。首先,章节1介绍了ANSYS 6.1的基础,包括安装、启动配置、界面介绍以及输出文件管理。后续章节深入到模型建立过程,如设置工作目录、作业名、分析标题,以及定义单元类型、材料属性等,这些都是构建结构分析模型的基础。 在实体建模部分,2.10至2.13详细阐述了实体的创建、网格划分、耦合和约束等关键步骤,确保模型的准确性和完整性。接下来的章节(3.1-3.2)涉及加载和求解,包括施加静态、动态或周期性载荷,以及求解方法的选择。 后处理是理解结果的关键环节,4.1-4.5部分依次讲解了通用后处理器、单元表、路径、时间历程后处理器等工具的使用。然后,资源还提供了几个实际案例分析,如六方孔螺钉静力分析、平面问题、轴对称和周期对称结构静力分析,以及动力学分析(如模态分析、谐响应分析)和预应力结构的处理,通过这些实例学习如何运用ANSYS进行复杂结构的分析。 每个步骤都伴随着命令流输入,使得用户能够跟随指导进行操作,并理解每一步骤的目的和效果。这份教程不仅适合初学者掌握ANSYS基础,也对有经验的工程师提供深入理解和实践操作的机会。通过学习,读者将能够熟练掌握ANSYS软件在解决各种结构问题时的应用技巧。

import pandas as pd import numpy as np from keras.models import load_model # 加载已经训练好的kerasBP模型 model = load_model('D://model.h5') # 读取Excel文件中的数据 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 对数据进行预处理,使其符合模型的输入要求# 假设模型的输入是一个包含4个特征的向量# 需要将Excel中的数据转换成一个(n, 4)的二维数组 X = data[['A', 'B', 'C', 'D']].values # 使用模型进行预测 y_pred = model.predict(X) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:4]) mse = ((y_test - y_pred) ** 2).mean(axis=None) y_pred_prob['Probability'] = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 过滤掉和值超过6或小于6的预测值 y_pred_filtered = y_pred_prob[(y_pred_prob.iloc[:, :4].sum(axis=1) == 6)] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 重新计算低于1.2的 Probability 值 low_prob_indices = y_pred_filtered[y_pred_filtered['Probability'] < 1.5].index for i in low_prob_indices: y_pred_int_i = y_pred_int[i] y_test_i = y_test[i] mse_i = ((y_test_i - y_pred_int_i) ** 2).mean(axis=None) new_prob_i = 1 / (1 + mse_i - ((y_pred_int_i - y_test_i) ** 2).mean(axis=None)) y_pred_filtered.at[i, 'Probability'] = new_prob_i # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)

2023-05-28 上传

import pandas as pd from keras.models import load_model from sklearn.preprocessing import MinMaxScaler # 加载已经训练好的kerasBP模型 model = load_model('D://model.h5') # 读取Excel文件中的数据 data = pd.read_excel('D://数据1.xlsx', sheet_name='4') # 对数据进行预处理,使其符合模型的输入要求 # 假设模型的输入是一个包含4个特征的向量 # 需要将Excel中的数据转换成一个(n, 4)的二维数组 X = data[['A', 'B', 'C', 'D']].values # 使用模型进行预测 y_pred = model.predict(X) scaler_y = MinMaxScaler(feature_range=(0, 4)) # 对预测结果进行反归一化 y_pred_int = scaler_y.inverse_transform(y_pred).round().astype(int) # 构建带有概率的预测结果 y_pred_prob = pd.DataFrame(y_pred_int, columns=data.columns[:4]) # 计算 mse y_test = data['y_true'].values mse = ((y_test - y_pred) ** 2).mean(axis=None) # 计算每个预测结果的概率并添加到 y_pred_prob 中 y_pred_prob['Probability'] = 1 / (1 + mse - ((y_pred_int - y_test) ** 2).mean(axis=None)) # 过滤掉和值超过6或小于6的预测值 y_pred_filtered = y_pred_prob[(y_pred_prob.iloc[:, :4].sum(axis=1) == 6)] # 去除重复的行 y_pred_filtered = y_pred_filtered.drop_duplicates() # 重新计算低于1.5的 Probability 值 low_prob_indices = y_pred_filtered[y_pred_filtered['Probability'] < 1.5].index for i in low_prob_indices: y_pred_int_i = y_pred_int[i] y_test_i = y_test[i] mse_i = ((y_test_i - y_pred_int_i) ** 2).mean(axis=None) new_prob_i = 1 / (1 + mse_i - ((y_pred_int_i - y_test_i) ** 2).mean(axis=None)) y_pred_filtered.at[i, 'Probability'] = new_prob_i # 打印带有概率的预测结果 print('Predicted values with probabilities:') print(y_pred_filtered)这段程序中错误是由于使用了尚未拟合的MinMaxScaler实例导致的。在使用scikit-learn中的任何转换器之前,都需要先使用fit方法进行拟合,以便转换器可以学习数据的范围和分布。你需要在调用inverse_transform方法之前使用fit方法对MinMaxScaler进行拟合,代码怎么修改

2023-05-28 上传