分布式阵列特性与波达方向估计算法优化
版权申诉
24 浏览量
更新于2024-07-02
收藏 994KB PDF 举报
分布式阵列特性及其波达方向估计算法研究.pdf是一篇深入探讨分布式阵列在现代无线通信和信号处理领域的论文。分布式阵列作为一种创新的阵列设计,其基本特点是利用多个小型阵元(subarrays)分散在空间中,形成大孔径效果,这有助于提升角度(DOA,Direction of Arrival)测量的精度和分辨率。然而,与传统的线性阵列相比,分布式阵列存在一个主要挑战,即空间采样定理导致的方向图(Pattern)中出现了无法消除的栅瓣(Grating lobes),这些额外的响应会影响目标的准确检测和参数估计。
首先,作者构建了一个由两个子阵构成的分布式阵列模型,详细研究了阵列参数如子阵间距、元素数量等如何影响阵列的方向图形状、波束宽度以及阵列的分辨率。阵列参数的优化对于减少栅瓣效应至关重要。
接着,作者聚焦于栅瓣特性分析,通过对比不同阵列参数配置下的栅瓣表现,揭示了它们随参数变化的规律。针对多子阵分布式阵列,作者引入了遗传算法来寻求最佳参数组合,以抑制或减少栅瓣的影响,从而改善系统的性能。
论文还探讨了分布式阵列的MUSIC(Multiple Signal Classification)空间谱特性,这是一种常用的DOA估计方法。作者揭示了MUSIC空间谱中的伪峰(false peaks)与栅瓣之间的关联,这些伪峰可能会误导DOA估计,因此,研究了如何通过预处理MUSIC算法来避免这个问题。预处理MUSIC算法通过缩小搜索区间,有效消除了空间谱伪峰,从而实现了DOA估计的解模糊,同时降低了计算复杂度,并在实际应用中提高了估计精度,优于双尺度ESPRIT算法。
关键词“分布式阵列”、“阵列方向图”、“栅瓣”、“波达方向估计”和“解模糊”强调了论文的核心关注点,表明了作者在理论研究和实际技术优化方面的贡献。这篇论文不仅提供了深入的理论分析,还为分布式阵列的设计和优化提供了实用的指导策略,对于无线通信、雷达系统和信号处理领域具有重要意义。
2022-07-02 上传
2021-08-10 上传
2022-07-02 上传
2021-08-11 上传
2021-08-10 上传
2021-08-09 上传
2021-08-09 上传
2021-08-09 上传
2021-08-08 上传
programmh
- 粉丝: 4
- 资源: 2162
最新资源
- 基于Python和Opencv的车牌识别系统实现
- 我的代码小部件库:统计、MySQL操作与树结构功能
- React初学者入门指南:快速构建并部署你的第一个应用
- Oddish:夜潜CSGO皮肤,智能爬虫技术解析
- 利用REST HaProxy实现haproxy.cfg配置的HTTP接口化
- LeetCode用例构造实践:CMake和GoogleTest的应用
- 快速搭建vulhub靶场:简化docker-compose与vulhub-master下载
- 天秤座术语表:glossariolibras项目安装与使用指南
- 从Vercel到Firebase的全栈Amazon克隆项目指南
- ANU PK大楼Studio 1的3D声效和Ambisonic技术体验
- C#实现的鼠标事件功能演示
- 掌握DP-10:LeetCode超级掉蛋与爆破气球
- C与SDL开发的游戏如何编译至WebAssembly平台
- CastorDOC开源应用程序:文档管理功能与Alfresco集成
- LeetCode用例构造与计算机科学基础:数据结构与设计模式
- 通过travis-nightly-builder实现自动化API与Rake任务构建