MATLAB实现聚类分析:源代码与算法解析

5星 · 超过95%的资源 需积分: 10 19 下载量 127 浏览量 更新于2024-10-15 1 收藏 110KB PDF 举报
"这篇内容是关于使用MATLAB进行聚类分析的实习指导,主要涉及了如何用MATLAB自编程序实现最短距离规则的聚类算法。提供的源代码包括了矩阵标准化、距离计算、聚类过程及结果展示等功能。" 在机器学习和数据分析领域,聚类分析是一种无监督学习方法,用于将数据集中的样本分成不同的组或“簇”,使得同一簇内的样本相似度较高,而不同簇间的样本相似度较低。MATLAB作为一款强大的数值计算和可视化工具,常被用于执行这类任务。 本资料重点介绍了利用MATLAB编程实现聚类分析的过程。首先,它提到了几个关键的辅助函数,如`min1.m`用于寻找矩阵中的最小值及其位置,`min2.m`用于比较两个数的大小,`std1.m`是用于矩阵的极差标准化,`ds1.m`则用于计算样本之间的绝对值距离矩阵,而`cluster.m`是核心的聚类函数,它依据最短距离规则进行聚类。最后,`print1.m`用于输出和展示聚类结果。 聚类分析的核心算法大致如下: 1. **初始化**:假设我们有一个a阶的距离矩阵,最大值为max。首先,创建一个与原始矩阵同阶的新矩阵,并将上三角部分填满max,表示初始时每个样本视为独立的簇。 2. **聚类迭代**:进行a-1次循环,每次循环会合并两个最近的簇。在每次迭代中: - 计算当前矩阵的阶数c,表示现存的簇数。 - 找到矩阵中最小的非对角线元素,确定待合并的两个簇(对应行e和列f)。 - 将这两个簇合并,更新矩阵:新矩阵的第c+1列和第e行、第f行设置为max,第e列和第f列的所有元素也设为max。 在给出的源代码中,`std1.m`实现了极差标准化,这是一种常用的标准化方法,通过减去每列的最小值并除以每列的最大值减最小值,使数据在0-1范围内分布,便于后续计算。`ds1.m`计算了两样本之间的绝对值距离,这是计算相似度的一种方式。 整个聚类过程依赖于距离矩阵,最短距离规则意味着每次合并距离最近的两个簇,直至满足聚类条件(如达到预设的簇数或满足特定的相似度阈值)。这种方法被称为单链连接法,是聚类分析中的一种简单但常用的方法。 这个实习指导详细阐述了如何在MATLAB中自定义函数实现聚类分析,对于理解聚类算法的原理和MATLAB编程具有很高的学习价值。通过实际运行这些源代码,学习者可以深入理解聚类过程,同时也能锻炼编程和数据分析能力。