精通Python数据可视化

5星 · 超过95%的资源 需积分: 10 145 下载量 25 浏览量 更新于2024-07-20 1 收藏 12.14MB PDF 举报
"Mastering Python Data Visualization 2015.10.pdf" 本书《Mastering Python Data Visualization》是Kirthi Raman的作品,专注于利用Python的绘图库创建各种吸引人的图表,以实现数据的有效可视化。书中涵盖了如何通过Python进行数据可视化的核心知识,帮助读者掌握在2015年时的最新技术。 Python是一种广泛用于数据分析和科学计算的编程语言,其强大的数据可视化能力得益于众多优秀的绘图库,如Matplotlib、Seaborn、Plotly和Bokeh等。本书可能详细介绍了这些库的使用方法,包括创建折线图、柱状图、散点图、热力图以及更复杂的3D图形和交互式图表。此外,还可能探讨了颜色理论、布局设计、自定义样式以及如何根据目标受众调整可视化效果等关键概念。 在实际应用中,Python数据可视化对于数据科学家、分析师以及任何需要解释和展示数据的人来说都是至关重要的技能。通过有效的数据可视化,可以更好地理解数据背后的故事,使复杂的数据变得易于理解,从而支持决策制定。 书中可能涉及以下知识点: 1. **基础绘图**: 使用Matplotlib库创建基本图表,包括直方图、饼图、线图和散点图。 2. **高级特性**: 学习如何利用Matplotlib的子图、图例、颜色映射和自定义轴等高级功能增强图表。 3. **Seaborn集成**: 了解Seaborn库如何与Matplotlib结合,提供更高级的统计可视化选项,如热力图、箱线图和小提琴图。 4. **交互式可视化**: 探索Plotly和Bokeh库,它们允许创建可缩放、可交互的Web图形,适合在线分享和探索。 5. **数据预处理**: 数据清洗、缺失值处理和数据转换,这是成功可视化之前的关键步骤。 6. **颜色理论**: 学习如何选择和应用颜色以提高图表的可读性和吸引力。 7. **地图可视化**: 利用geopandas和folium库将地理数据转化为地图。 8. **动态可视化**: 创建动画和时间序列可视化,以便展示数据随时间的变化。 9. **最佳实践**: 提供有关如何设计有效可视化的指导原则,如避免信息过载和使用视觉层次结构。 10. **故事讲述**: 学习如何通过可视化讲述数据背后的故事,以增强观众的理解和兴趣。 通过阅读这本书,读者不仅可以提升Python数据可视化技巧,还能学习到如何根据不同的场景和目的选择合适的可视化类型,以及如何创建具有专业品质的数据可视化作品。这将有助于提升数据驱动的决策质量和效率。
297 浏览量
About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop your existing Python knowledge, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives, author-driven narratives, and the principles of perception Understand why Python is an effective tool for numerical computation much like MATLAB, and explore some interesting data structures that come with it Use various visualization techniques to explore how Python can be very useful for financial and statistical computations Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL, such as Hive, to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations that involve optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, the book covers the complete visualization process, using the most popular Python libraries with working examples. You will learn how to use NumPy, SciPy,