基于PSO-SVM的矿井瓦斯突出预测模型对比研究
17 浏览量
更新于2024-09-04
收藏 1.7MB PDF 举报
本文主要探讨了基于支持向量机(SVM)的煤与瓦斯突出预测模型在矿井安全领域的应用。作者王建针对晋城煤业集团寺河煤矿二号井的实际情况,深入分析了影响煤与瓦斯突出的关键因素。他首先构建了两个预测模型,分别是基于粒子群优化算法(PSO)的支持向量机模型和基于遗传算法(GA)的支持向量机模型,这两个算法在优化决策边界和寻找最优解方面具有优势。
通过对这两种模型进行实例验证,结果显示PSO-SVM模型在处理小样本数据时表现出了显著的优势。它不仅能够准确地预测煤与瓦斯突出的程度,而且综合预测的结果更为精确。特别是在处理矿井内煤与瓦斯突出这类复杂问题时,PSO-SVM模型展现出了强大的适应性和通用性,即使面对有限的数据也能提供可靠的预测结果。
研究中还采用了其他方法进行对比,如单项和综合指标、BP神经网络以及PSO-SVM模型和GA-SVM模型,这些都用来评估不同模型在预测煤与瓦斯突出方面的效果。结果证实了PSO-SVM模型在预测准确性和稳定性上的领先地位。
该研究的重要意义在于,它提供了一种实用且有效的工具,可以帮助矿井管理者提前识别潜在的突出风险,从而采取预防措施,保障矿工安全,减少事故发生的可能性。同时,这也展示了支持向量机在矿业工程中的潜力,尤其是在处理数据量较小但又需要高精度预测的复杂问题时。该研究成果对于提升我国煤矿开采过程中的安全管理具有重要的实践价值。
112 浏览量
130 浏览量
2022-11-03 上传
点击了解资源详情
383 浏览量
点击了解资源详情

weixin_38704485
- 粉丝: 8
最新资源
- Swift实现渐变圆环动画的自定义与应用
- Android绘制日历教程与源码解析
- UCLA LONI管道集成Globus插件开发指南
- 81军事网触屏版自适应HTML5手机网站模板下载
- Bugzilla4.1.2+ActivePerl完整安装包
- Symfony SonataNewsBundle:3.x版本深度解析
- PB11分布式开发简明教程指南
- 掌握SVN代码管理器,提升开发效率与版本控制
- 解决VS2010中ActiveX控件未注册的4个关键ocx文件
- 斯特里尔·梅迪卡尔开发数据跟踪Android应用
- STM32直流无刷电机控制实例源码剖析
- 海豚系统模板:高效日内交易指南
- Symfony CMF路由自动化:routing-auto-bundle的介绍与使用
- 实现仿百度下拉列表框的源码解析
- Tomcat 9.0.4版本特性解析及运行环境介绍
- 冒泡排序小程序:VC6.0实现代码解析