掌握MATLAB中的Xception网络模型:图像分类利器

下载需积分: 49 | ZIP格式 | 6KB | 更新于2025-01-09 | 16 浏览量 | 10 下载量 举报
收藏
资源摘要信息:"Deep Learning ToolboxTM Model for Xception Network:用于图像分类的预训练 Xception 模型-matlab开发" 知识点详细说明: 1. Xception 网络模型概念: Xception(Extreme Inception)是一个深度学习架构,它是由Francois Chollet提出的,他是Inception系列网络(如Inception-v3)的作者。Xception模型通过使用深度可分离卷积来改进Inception网络。深度可分离卷积将标准卷积分解为深度卷积和逐点卷积,这样的结构旨在提高模型性能,同时减少模型的计算复杂度。 2. 预训练模型与ImageNet数据库: 预训练模型是指在大规模数据集上预先训练好的模型。在这个案例中,Xception模型是在ImageNet数据库的一个子集上训练的。ImageNet是一个包含数百万张标记图像的数据集,被广泛用于训练和测试计算机视觉模型。ImageNet中的图像被标记到1000个不同的对象类别,这些类别覆盖了从动物到各种物品的广泛范围。通过在ImageNet上训练模型,使其能够识别和分类新的图像到这些类别。 3. MATLAB开发环境: MATLAB是一个高性能的数学计算和可视化环境,广泛用于算法开发、数据可视化、数据分析以及数值计算。Deep Learning Toolbox是MATLAB中的一个工具箱,它提供了一系列函数和应用程序接口,用于构建、训练和部署深度神经网络。通过这个工具箱,用户可以实现各种深度学习任务,包括图像处理、语音识别、自然语言处理等。 4. xception.mlpkginstall文件: xception.mlpkginstall是一个用于安装预训练的Xception模型的MATLAB安装包文件。用户可以通过在MATLAB中打开这个文件或从操作系统中打开它,来启动Xception模型的安装过程。安装文件适用于MATLAB的R2019a及更高版本。这个安装包文件简化了安装过程,用户无需手动下载和安装模型。 5. 使用示例和代码解释: - 获取训练好的Xception模型:在MATLAB中,可以使用一行代码`net = xception()`来加载和实例化预训练的Xception模型。 - 查看模型架构细节:通过`net.Layers`可以查看网络层的详细信息,这对于理解模型结构和可能的自定义修改很有帮助。 - 图像分类流程:首先需要读取图像文件`I = imread('peppers.png')`,然后调整图像大小以匹配网络输入尺寸`I = I(1:sz(1),1:sz(2),1:sz(3))`。接下来,可以使用`net`对图像进行分类`label = classify(net, I)`,最后,使用`disp(label)`显示分类结果。 6. MATLAB中的图像处理和深度学习应用: MATLAB的图像处理工具箱提供了丰富的函数和工具,用于图像预处理、增强、分割和分析等。结合Deep Learning Toolbox,用户可以利用MATLAB进行深度学习模型的训练、测试和部署,不仅限于图像分类任务,还包括图像识别、目标检测、图像分割和图像生成等。 总结:本资源提供了关于Xception网络模型的基础知识,以及如何在MATLAB中利用Deep Learning Toolbox进行图像分类任务的详细步骤。通过实例代码,用户可以快速理解和应用Xception模型进行图像处理和分析。此外,资源还提供了关于如何在MATLAB环境中安装和使用预训练模型的信息,这对于深度学习实践者来说是一个非常实用的指南。

相关推荐

filetype
深度学习工具包 Deprecation notice. ----- This toolbox is outdated and no longer maintained. There are much better tools available for deep learning than this toolbox, e.g. [Theano](http://deeplearning.net/software/theano/), [torch](http://torch.ch/) or [tensorflow](http://www.tensorflow.org/) I would suggest you use one of the tools mentioned above rather than use this toolbox. Best, Rasmus. DeepLearnToolbox ================ A Matlab toolbox for Deep Learning. Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng. * [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007) * [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010) * [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011) If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284) ``` @MASTERSTHESIS\{IMM2012-06284, author = "R. B. Palm", title = "Prediction as a candidate for learning deep hierarchical models of data", year = "2012", } ``` Contact: rasmusbergpalm at gmail dot com Directories included in the toolbox ----------------------------------- `NN/` - A library for Feedforward Backpropagation Neural Networks `CNN/` - A library for Convolutional Neural Networks `DBN/` - A library for Deep Belief Networks `SAE/` - A library for Stacked Auto-Encoders `CAE/` - A library for Convolutional Auto-Encoders `util/` - Utility functions used by the libraries `data/` - Data used by the examples `tests/` - unit tests to verify toolbox is working For references on each library check REFS.md Setup ----- 1. Download. 2. addpath(genpath('DeepLearnToolbox')); Example: Deep Belief Network --------------------- ```matlab function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand('state',0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand('state',0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = 'sigm'; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, 'Too big error'); ``` Example: Stacked Auto-Encoders --------------------- ```matlab function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand('state',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = 'sigm'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, 'Too big error'); ``` Example: Convolutional Neural Nets --------------------- ```matlab function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x',28,28,60000))/255; test_x = double(reshape(test_x',28,28,10000))/255; train_y = double(train_y'); test_y = double(test_y'); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you'll get around 1.2% error rand('state',0) cnn.layers = { struct('type', 'i') %input layer struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %sub sampling layer struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer struct('type', 's', 'scale', 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, 'Too big error'); ``` Example: Neural Networks --------------------- ```matlab function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand('state',0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, 'Too big error'); %% ex2 neural net with L2 weight decay rand('state',0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex3 neural net with dropout rand('state',0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex4 neural net with sigmoid activation function rand('state',0) nn = nnsetup([784 100 10]); nn.activation_function = 'sigm'; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex5 plotting functionality rand('state',0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = 'softmax'; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand('state',0) nn = nnsetup([784 20 10]); nn.output = 'softmax'; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, 'Too big error'); ``` [![Bitdeli Badge](https://d2weczhvl823v0.cloudfront.net/rasmusbergpalm/deeplearntoolbox/trend.png)](https://bitdeli.com/free "Bitdeli Badge")
7443 浏览量