训练误差与测试误差:过拟合现象与神经网络结构设计
需积分: 19 127 浏览量
更新于2024-08-07
收藏 1.64MB PDF 举报
在"训练过程中测试误差和训练误差的变化-无线电测向"的学习材料中,主要探讨了神经网络训练过程中的性能监控和泛化能力分析。神经网络结构设计是关键,特别是在选择合适的网络结构和优化算法时。该部分着重介绍了以下几个核心知识点:
1. **神经网络结构设计**:强调了结构设计的重要性,如神经元模型(如大脑神经细胞模型、MP模型和一般模型)的选择对性能的影响。书中提到的理论方法包括影响泛化能力的因素,如剪枝算法(如权值衰减法、灵敏度计算方法、相关性剪枝等)、构造算法(如CC算法和资源分配网络)以及进化方法。
2. **训练过程与误差**:图8.6和图8.7展示了训练过程中训练误差和测试误差的变化趋势。在训练初期,随着训练次数的增加,测试误差通常会降低,达到一个最低点,但超过这个点后,可能会出现过拟合现象,如图中所示,当训练到3000次时,测试误差显著增加。
3. **BP(Backpropagation)网络和RBF(Radial Basis Function)网络**:BP网络,特别是多层感知器(MLP),是通过反向传播算法进行训练的,其结构和学习规则(如Hebb学习规则、δ学习规则和Widrow-Hoff规则)被详细讲解。同时,径向基函数神经网络(RBFN)因其非线性特性被用于解决复杂问题,包括其工作原理和生理学基础。
4. **优化方法**:介绍了神经网络参数优化的设计方法,如最优停止策略、主动学习和集成学习,这些都是提高网络性能的有效手段。
5. **书籍特色**:该书提供了MATLAB实现代码,便于读者理解和实践。它既包含了基础理论,又涵盖了近年来的研究进展,适合自动化、信号处理等领域的工程技术人员、研究生和教师使用。
综上,这部分内容深入探讨了神经网络训练过程中的动态调整、结构优化以及常见算法的应用,帮助读者理解如何通过实验数据来监控和控制过拟合,从而设计出具有良好泛化能力的神经网络模型。
2021-08-15 上传
2014-08-08 上传
2021-09-15 上传
2021-05-13 上传
2023-08-29 上传
2021-12-19 上传
2021-06-15 上传
点击了解资源详情
杨_明
- 粉丝: 77
- 资源: 3874
最新资源
- 高清艺术文字图标资源,PNG和ICO格式免费下载
- mui框架HTML5应用界面组件使用示例教程
- Vue.js开发利器:chrome-vue-devtools插件解析
- 掌握ElectronBrowserJS:打造跨平台电子应用
- 前端导师教程:构建与部署社交证明页面
- Java多线程与线程安全在断点续传中的实现
- 免Root一键卸载安卓预装应用教程
- 易语言实现高级表格滚动条完美控制技巧
- 超声波测距尺的源码实现
- 数据可视化与交互:构建易用的数据界面
- 实现Discourse外聘回复自动标记的简易插件
- 链表的头插法与尾插法实现及长度计算
- Playwright与Typescript及Mocha集成:自动化UI测试实践指南
- 128x128像素线性工具图标下载集合
- 易语言安装包程序增强版:智能导入与重复库过滤
- 利用AJAX与Spotify API在Google地图中探索世界音乐排行榜