高隐蔽性JPEG隐写分析:基于KFD指标的聚类方法

PDF格式 | 832KB | 更新于2024-08-26 | 171 浏览量 | 0 下载量 举报
收藏
"基于KFD指标聚类的高隐蔽性JPEG隐写分析" 本文主要探讨了在隐写术分析领域中,如何针对非公开图像源或算法的隐写行为进行更有效的聚类分析,以提高隐写检测的准确性。在隐写者先验信息不足的情况下,聚类分析成为一种实用的策略。Ker等人曾提出使用最大平均距离(MMD)指标进行聚类的隐写者识别方法,但这种方法仅考虑样本中心之间的距离,忽视了样本相对于中心的聚合程度对分类性能的影响。 为了提升聚类分析的准确性,文章提出了基于核Fisher鉴别(KFD)指标的聚类方法。KFD指标是一种结合了类间方差和类内方差的差异度量工具,它能够同时考虑类间的分离度和类内的紧密度,从而提供更精确的样本间差异估计。具体实现步骤包括:首先,从JPEG图像中提取PEV274校准特征,并对其进行归一化处理;接着,利用KFD指标计算样本间的距离矩阵;最后,通过样本间差异度量矩阵,采用重心法自底向上进行层次聚类分析。 实验结果显示,采用KFD指标的聚类方法对于低嵌入率的隐写分析,准确率最高可以提升约30%,而对于高嵌入率的情况,准确率下降不超过5%。相较于现有方法,KFD指标的聚类方法在平均准确率上有显著提升。 该文的创新之处在于,不仅提出了一个更加合理的差异度量指标——KFD,还给出了基于此指标的聚类隐写分析框架,这一方法对于提升隐写分析的准确性具有实际意义。该研究受到了国家自然科学基金、北京市自然科学基金等多个项目的资助,由黄炜、赵险峰和盛任农等研究人员共同完成,他们分别在隐写分析、信息隐藏和信号处理等领域有着深入的研究背景。

相关推荐