"SQLAlchemy基础操作全解析;ORM简介与优势;数据库连接步骤"

3星 · 超过75%的资源 需积分: 5 3 下载量 187 浏览量 更新于2024-02-01 收藏 657KB PDF 举报
SQLAlchemy是一个功能强大的Python库,用于数据库的ORM操作。通过使用ORM,我们可以通过类的方式去操作数据库,而不用再写原生的SQL语句。通过ORM,表被映射成类,行作为实例对象,字段作为类属性。ORM在执行对象操作的时候最终还是会把对应的操作转化为数据库原生语句。 SQLAlchemy具有许多优点。首先,它易用,使得数据库操作变得非常简单。其次,性能损耗小,可以高效地执行各种数据库操作。其设计也非常灵活,可以根据需求进行定制化开发。最后,SQLAlchemy具有很强的可移植性,可以在不同的数据库和平台上运行。 要使用SQLAlchemy,首先需要安装它。安装命令为`pip install sqlalchemy`。连接数据库时,需要使用create_engine函数来创建一个引擎,其中数据库连接的地址格式为`dialect://username:password@host:port/database`,如mysql,sqlite等。需要注意的是,数据库类型和地址一定要小写。 SQLAlchemy提供了丰富的基本操作,包括创建表、插入数据、查询数据、更新数据和删除数据等。创建表时,可以使用declarative_base函数进行定义,定义数据表以及其字段。插入数据时,可以通过session.add()和session.commit()来添加数据到数据库中。查询数据时,可以使用query函数进行查询,并通过filter、order_by等方法来进行筛选和排序。更新数据和删除数据也非常简单,通过session.commit()来提交更新和删除操作。 除了基本操作之外,SQLAlchemy还提供了更高级的功能,包括事务管理、连接池、ORM映射关系等。事务管理可以保证数据库操作的原子性,保证操作要么全部成功,要么全部失败。连接池可以提高数据库的性能和并发能力,使得数据库操作更加高效和稳定。ORM映射关系可以在不同的表之间建立关联,进行复杂的数据操作。 总之,SQLAlchemy是一个功能强大、易用、灵活、高性能的数据库ORM框架,可以满足各种复杂的数据库操作需求,是Python开发中不可或缺的重要工具。通过学习和掌握SQLAlchemy的基本操作,可以更加高效地进行数据库开发和管理。
229 浏览量
The SQLAlchemy Object Relational Mapper presents a method of associating user-defined Python classes with database tables, and instances of those classes (objects) with rows in their corresponding tables. It includes a sys- tem that transparently synchronizes all changes in state between objects and their related rows, called a unit of work, as well as a system for expressing database queries in terms of the user defined classes and their defined relationships between each other. The ORM is in contrast to the SQLAlchemy Expression Language, upon which the ORM is constructed. Whereas the SQL Expression Language, introduced in SQL Expression Language Tutorial, presents a system of representing the primitive constructs of the relational database directly without opinion, the ORM presents a high level and abstracted pattern of usage, which itself is an example of applied usage of the Expression Language. While there is overlap among the usage patterns of the ORM and the Expression Language, the similarities are more superficial than they may at first appear. One approaches the structure and content of data from the perspective of a user-defined domain model which is transparently persisted and refreshed from its underlying storage model. The other approaches it from the perspective of literal schema and SQL expression representations which are explicitly composed into messages consumed individually by the database. A successful application may be constructed using the Object Relational Mapper exclusively. In advanced situations, an application constructed with the ORM may make occasional usage of the Expression Language directly in certain areas where specific database interactions are required. The following tutorial is in doctest format, meaning each >>> line represents something you can type at a Python command prompt, and the following text represents the expected return value.