工业机器人运动学与动力学基础详解

需积分: 35 85 下载量 174 浏览量 更新于2024-08-01 1 收藏 3.8MB PPT 举报
本PPT专注于工业机器人的运动学和动力学分析,这些是机器人技术的基础组成部分。运动学主要研究机器人的运动规律,包括杆件参数、坐标系建立和变换等。 1. 杆件参数的意义: 杆件参数对于理解机器人运动至关重要。例如,杆件长度`li`代表了从一个关节到另一个关节的直线段长度,而扭转角`αi`则表示关节旋转的角度。这两个参数决定了杆件保持其两端关节间形态的能力。 2. 坐标系的建立: 建立坐标系的原则是选择合适的位置和方向,通常以关节轴作为基准。在工业机器人中,坐标系通常右手坐标系,原点`Oi`位于杆件Li与关节Ai+1轴线的交点,Zi轴与关节轴重合,Xi轴沿公法线Li指向相邻关节,Yi轴通过右手定则确定。坐标系之间的变换通过齐次变换实现,包括旋转、平移等步骤。 3. 运动学方程: 机器人运动学方程描述了机器人的关节角如何转换为末端执行器的实际运动。这些方程包括各个关节的角度与位姿之间的关系,涉及正弦、余弦函数,以及各轴之间的旋转矩阵,如绕Zi-1轴旋转的关节角和沿Zi-1轴的平移距离。 4. 串联关节结构: 串联关节结构的机器人中,每个杆件最多连接两个关节,如Ai与Ai-1和Ai+1。这样的设计确保了各杆件只负责保持它们之间关节的相对位置,即长度和扭转角。 5. 坐标系变换: 邻接关节坐标系之间的变换是运动学分析中的核心环节。通过一系列连续的齐次变换,可以将一个关节坐标系的运动映射到另一个,这对于控制和路径规划至关重要。 总结来说,这门课件深入浅出地介绍了机器人运动学中的基本概念和技术,涵盖了杆件参数、坐标系设置、变换规则以及运动方程,对于理解和设计工业机器人的运动性能具有重要意义。