遗传算法解决旅行商问题的研究与实现——基于C++ MFC

需积分: 14 6 下载量 152 浏览量 更新于2024-07-17 收藏 448KB DOC 举报
"这篇论文主要探讨了使用遗传算法解决旅行商问题(TSP)的研究与实现,作者是杨敏,来自南京理工大学计算机科学与技术学院。论文详细介绍了遗传算法的基本原理,以及如何将其应用于TSP问题的求解。" 遗传算法是一种受到生物进化理论启发的全局优化方法,由查尔斯·达尔文的自然选择理论和格雷戈尔·门德尔的遗传学原理相结合而形成。它通过模拟生物进化过程中的选择、交叉和变异等操作,寻找问题的最优解。在解决NP完全问题如旅行商问题时,遗传算法展现出了高效性和灵活性。 旅行商问题(TSP)是一个经典的组合优化问题,目标是找到一条访问给定城市集合中每个城市一次并返回起点的最短路径。由于其复杂性,TSP被归类为NP完全问题,意味着不存在已知的多项式时间解决方案。 论文首先对遗传算法和TSP问题进行了概述,接着详细介绍了TSP的数学模型。在遗传算法的应用部分,论文讨论了编码表示方法,这是将问题转化为遗传算法可操作的形式的关键步骤。此外,还探讨了遗传算子,包括选择算子(如轮盘赌选择)、交叉算子(如单点交叉、均匀交叉)和变异算子(如均匀变异、位变异),这些算子共同决定了算法的搜索行为。 论文进一步深入,研究了如何通过调整初始种群大小、交叉率、变异率和遗传代数等关键参数来影响算法的性能。通过对这些参数的修改、测试和对比,作者分析了它们对求解结果和求解效率的影响,以优化算法的性能。 在外文摘要中,论文以英文形式重述了上述内容,强调了TSP作为NP完全问题的特性,以及遗传算法作为解决此类问题的有效工具。外文摘要同样突出了算法的实现细节和参数调优的重要性。 这篇论文为本科计算机专业的学生提供了一个深入理解遗传算法及其在实际问题中应用的实例,特别关注了如何利用C++ MFC库实现遗传算法来解决旅行商问题。通过这篇论文,读者可以学习到如何设计和实现一个基于遗传算法的优化解决方案,并理解参数调优对算法性能的影响。
649 浏览量
2025-01-06 上传
在科技与司法的交响曲中,智慧法院应运而生,成为新时代司法服务的新篇章。它不仅仅是一个概念,更是对法院传统工作模式的一次深刻变革。智慧法院通过移动信息化技术,为法院系统注入了强大的生命力,有效缓解了案多人少的矛盾,让司法服务更加高效、便捷。 立案、调解、审判,每一个阶段都融入了科技的智慧。在立案阶段,智慧法院利用区块链技术实现可信存证,确保了电子合同的合法性和安全性,让交易双方的身份真实性、交易安全性得到了有力见证。这不仅极大地缩短了立案时间,还为后续审判工作奠定了坚实的基础。在调解阶段,多元调解服务平台借助人工智能、自然语言处理等前沿技术,实现了矛盾纠纷的快速化解。无论是矛盾类型的多元化,还是化解主体的多元化,智慧法院都能提供一站式、全方位的服务,让纠纷解决更加高效、和谐。而在审判阶段,智能立案、智能送达、智能庭审、智能判决等一系列智能化手段的应用,更是让审判活动变得更加智能化、集约化。这不仅提高了审判效率,还确保了审判质量的稳步提升。 更为引人注目的是,智慧法院还构建了一套完善的执行体系。移动执行指挥云平台的建设,让执行工作变得更加精准、高效。执行指挥中心和信息管理中心的一体化应用,实现了信息的实时传输和交换,为执行工作提供了强有力的支撑。而执行指挥车的配备,更是让执行现场通讯信号得到了有力保障,应急通讯能力得到了显著提升。这一系列创新举措的实施,不仅让执行难问题得到了有效解决,还为构建诚信社会、保障金融法治化营商环境提供了有力支撑。智慧法院的出现,让司法服务更加贴近民心,让公平正义的阳光更加温暖人心。