使用NLTK和Python库构建NLP与机器学习应用实战

需积分: 10 0 下载量 110 浏览量 更新于2024-07-17 收藏 2.89MB PDF 举报
"NLTK_Essentials.pdf.pdf" 本书《NLTK_Essentials》是一部关于自然语言处理(NLP)和机器学习应用的综合指南,主要聚焦于使用Python中的NLTK(自然语言工具包)和其他相关库进行开发。作者Nitin Hardeniya是一位在该领域有深厚经验的专业人士,他通过本书向读者传授如何利用这些工具创建高效的NLP和机器学习应用。 NLTK是Python编程语言中广泛使用的NLP库,它提供了丰富的文本处理功能,包括分词、词性标注、命名实体识别、语义分析等。本书将引导读者了解NLTK的基础知识,并逐步深入到更复杂的NLP任务。同时,书中还会介绍如何结合其他Python库,如Scikit-learn、Gensim、Spacy等,来增强NLP项目的性能和功能。 在开始部分,读者将了解到如何安装和设置NLTK环境,以及如何获取和处理文本数据。接着,作者会讲解基本的文本预处理步骤,如去除停用词、标点符号和数字,以及词干提取和词形还原。这部分内容对于任何NLP项目来说都是至关重要的,因为有效的预处理可以显著提高后续分析的准确性和效率。 随着内容的深入,书中的章节会涉及词性标注和命名实体识别,这些是理解和提取文本结构的关键。此外,作者还将介绍NLTK中的句法分析功能,如依赖关系解析和共指消解,帮助读者理解文本中的句法结构和实体之间的关系。 机器学习部分,作者将探讨如何使用NLTK与其他Python库构建分类器和聚类算法,以解决情感分析、主题建模等实际问题。这里可能涵盖了朴素贝叶斯、支持向量机以及深度学习模型的基础知识和应用方法。 书中还将讨论到文本相似度和信息检索,这是许多NLP应用的核心。通过学习余弦相似度、Jaccard相似度等度量方法,以及TF-IDF和Word2Vec等表示学习技术,读者将能够开发出智能的问答系统或搜索引擎。 最后,本书可能会涵盖一些进阶话题,如情感分析、语义理解、对话系统以及使用NLTK进行文本生成。所有这些内容都将辅以实际代码示例和案例研究,以便读者能更好地理解和应用所学知识。 请注意,虽然本书力求提供准确的信息,但作者和出版商并不对因使用本书内容而可能导致的直接或间接损害负责。此外,尽管出版商尽力提供商标信息的准确性,但并不能保证所有的公司和产品提及都是准确无误的。 《NLTK_Essentials》是Python开发者和数据科学家的理想资源,它将帮助他们掌握自然语言处理的基石,并利用这些工具实现创新的机器学习应用。
162 浏览量
Build cool NLP and machine learning applications using NLTK and other Python libraries About This Book Extract information from unstructured data using NLTK to solve NLP problems Analyse linguistic structures in text and learn the concept of semantic analysis and parsing Learn text analysis, text mining, and web crawling in a simplified manner Who This Book Is For If you are an NLP or machine learning enthusiast with some or no experience in text processing, then this book is for you. This book is also ideal for expert Python programmers who want to learn NLTK quickly. What You Will Learn Get a glimpse of the complexity of natural languages and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you better process data Explore the different types of tags available and learn how to tag sentences Create a customized parser and tokenizer to suit your needs Build a real-life application with features such as spell correction, search, machine translation and a question answering system Retrieve any data content using crawling and scraping Perform feature extraction and selection, and build a classification system on different pieces of texts Use various other Python libraries such as pandas, scikit-learn, matplotlib, and gensim Analyse social media sites to discover trending topics and perform sentiment analysis In Detail Natural Language Processing (NLP) is the field of artificial intelligence and computational linguistics that deals with the interactions between computers and human languages. With the instances of human-computer interaction increasing, it's becoming imperative for computers to comprehend all major natural languages. Natural Language Toolkit (NLTK) is one such powerful and robust tool. You start with an introduction to get the gist of how to build systems around NLP. We then move on to explore data science-related tasks, following which you will learn how to create a customized tokenizer and parser from scratch. Throughout, we delve into the essential concepts of NLP while gaining practical insights into various open source tools and libraries available in Python for NLP. You will then learn how to analyze social media sites to discover trending topics and perform sentiment analysis. Finally, you will see tools which will help you deal with large scale text. By the end of this book, you will be confident about NLP and data science concepts and know how to apply them in your day-to-day work. Table of Contents Chapter 1: Introduction to Natural Language Processing Chapter 2: Text Wrangling and Cleansing Chapter 3: Part of Speech Tagging Chapter 4: Parsing Structure in Text Chapter 5: NLP Applications Chapter 6: Text Classification Chapter 7: Web Crawling Chapter 8: Using NLTK with other Python Libraries Chapter 9: Social Media Mining in Python Chapter 10: Text Mining at Scale