阿基米德铺砌(3.6.3.6)圆内C-点数的极限性质
需积分: 10 135 浏览量
更新于2024-08-11
收藏 197KB PDF 举报
"铺砌(3.6.3.6)的圆内C-点数 (2011年)"
本文是一篇自然科学领域的论文,作者贾丽杰,发表于2011年1月的《河北师范大学学报/自然科学版》。文章主要探讨的是阿基米德铺砌(3.6.3.6)中的一个几何问题,具体涉及以这种铺砌的顶点(C-点)为中心,半径为r=√n(n为正整数)的圆D(n)内的C-点数量。
阿基米德铺砌是数学几何中的一个概念,它指的是通过有限种类的等边多边形无空隙、无重叠地覆盖平面。这里的(3.6.3.6)表示铺砌由两种不同类型的多边形组成:每个多边形有3条边与其它多边形相邻,而这些边又分别与6个不同的多边形相邻。这种铺砌形式在实际中很常见,例如在马赛克设计和瓷砖铺设中。
文章的核心内容是确定了圆D(n)内部及边界上包含的C-点数N(n)。作者通过数学分析和计算得出N(n)的具体表达式,并进一步证明了当n趋向于无穷大时,C-点数与半径平方根的比值极限为√3/2π。这个结果对于理解这种特定铺砌模式下的点分布规律有着重要意义,也反映了数学中的极限理论和几何计数原则。
在平面铺砌的研究中,顶点和边的数量以及它们之间的关系是关键的数学对象。通过对圆内的C-点数进行计数,可以揭示铺砌结构的局部性质。这个极限定理提供了一种评估无限大区域内点密度的方法,对于铺砌理论和组合几何等领域有理论价值。
关键词包括“铺砌”、“格”、“C-点”和“圆”,表明研究集中在铺砌几何、点分布以及它们与圆形区域的关系。中图分类号0157.3属于数学领域,文献标识码A则表示这是一篇原创性学术论文。文章编号1000-5854(2011)01-0006-03是该论文的唯一标识,便于检索和引用。
总结来说,这篇论文对阿基米德铺砌(3.6.3.6)中以顶点为中心的圆内C-点的计数问题进行了深入研究,不仅给出了具体的点数表达式,还证明了一个关于点数极限的定理,为理解这类铺砌的几何特性提供了重要的理论基础。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-02-05 上传
2022-02-05 上传
2021-09-10 上传
2022-02-05 上传
2022-02-05 上传
2022-02-05 上传
weixin_38701952
- 粉丝: 5
最新资源
- Oracle数据库在MSCS+FailSafe双机集群中的HA实践总结
- 一站式单点登录:提升效率与安全保障
- RF模组设计与应用探讨
- JSP实现注册验证码的详细步骤与源代码示例
- RF模块与C语言设计:优化信号接收与解决发射问题
- R初学者指南:中文版2.0
- FPS200指纹传感器驱动的USB便携式采集仪设计详解
- Linux新手管理员完全指南:中文译本
- 数据结构:串操作实现详解
- 数据结构模拟试题B:栈、队列与线性表解析
- Vista系统下MySQL安装全攻略
- CC2430系统级芯片:2.4GHz IEEE 802.15.4与ZigBee应用解决方案
- iReport使用教程:从入门到精通
- OpenSPARC Internals深度解析
- 形式语言与自动机习题解答:第3、5章关键题
- Sybase 15系统管理第二卷:中文实战手册