编程实现Mallat快速小波变换:详解与MATLAB示例
5星 · 超过95%的资源 需积分: 9 44 浏览量
更新于2024-09-12
收藏 566KB DOC 举报
小波变换是一种强大的信号处理工具,尤其在数据分析和图像处理中有着广泛应用。在这个实验中,我们将深入探讨离散快速小波变换的Mallat算法,并通过Matlab编程来实现这一过程。
首先,实验的目标是通过编程实践,增强对二维小波变换的理解,提升编程技能,并熟悉Matlab在实际问题中的应用。Mallat算法是一种高效的小波分解方法,它利用递归结构和“抽取”操作,将信号分解成低频和高频两部分,便于分析和特征提取。
算法的核心是基于两个滤波器,一个称为低通滤波器h,另一个为高通滤波器g。这两个滤波器通过与输入信号进行卷积操作,得到下一级的低频和高频系数。在实验中,原始图像首先进行边界延拓,这涉及到不同的延拓方法,如零延拓、周期延拓、对称周期延拓和常数连续延拓,以确保变换的正确性。
分解阶段的编程思路采用了循环结构,通过逐个元素的相乘和累加,计算出低频系数r1和高频系数r2。具体来说,对于每个像素,先计算h和x的卷积,然后将结果保存到相应的矩阵中。同样的过程也应用于g和x。最后,这些系数形成了一维向量y,存储了整个图像的分解结果。
重构阶段则是逆过程,通过快速傅里叶变换(FFT)和反快速傅里叶变换(IFFT),结合低频和高频系数,恢复原始图像。在这个过程中,为了减少计算复杂性,使用频域相乘来代替时域的卷积操作。
这个实验不仅涉及小波变换的基本理论,还包括了Matlab编程的实际应用,学生将在实践中学习如何设计和实现小波分解,以及如何处理边界条件,这对于理解和掌握小波变换技术至关重要。完成这个项目后,参与者将具备在图像处理和信号分析中使用小波变换的能力,为后续深入学习打下坚实的基础。
197 浏览量
102 浏览量
295 浏览量
点击了解资源详情
1255 浏览量
2027 浏览量
104 浏览量
2009-07-15 上传
123 浏览量
huangruoge
- 粉丝: 0
- 资源: 1
最新资源
- SMTPSender(iPhone源代码)
- 类似瀑布流的网格视图效果
- win7 64位安装IE11所需补丁
- WIFIRobots
- 多路DA上位机+单片机源码.zip
- cace:CMS管理员命令执行
- cursoKuberneteswildfly:Curso cursoKubernetes野蝇sobre Cubernetes
- mysql-connector-java-8.0.25.zip
- 建筑节能平台登录网页模板
- 网络游戏-基于移动无线网络、通过远程服务器进行地图解析的方法.zip
- PCBMill:PCBMill FABtotum插件
- 房屋出租管理系统.rar
- Google Chrome:trade_mark:的标签管理器-crx插件
- WindowsFormsApp1.zip
- agora:面向目标的敏捷需求获取
- webtesting-ii-guided:Web测试II模块指导项目